Math 2050, HW 2. Due: 10 Oct 2024, before 23:59

(1) Use the ε -N terminology, show the followings:

(a)
$$\lim_{n \to +\infty} \frac{n^3 + 2n + 1}{n^3 - 2} = 0$$

- (b) $\lim_{n \to +\infty} n^2 3^{-n} = 0.$
- (2) Suppose (x_n) is a sequence of real number such that $x_n \to x$ for some $x \in \mathbb{R}$.
 - (a) If $x_n \in [a, b]$ for some a, b, show that $x \in [a, b]$.
 - (b) If $x \in (a, b)$, show that there exists N such that $x_n \in (a, b)$ for all n > N.
- (3) Show that if $z_n = (a^n + b^n)^{1/n}$ for some distinct a, b > 0, then $z_n \to \max\{a, b\}$.
- (4) Suppose (x_n) is a sequence of positive real number such that $x_n^{1/n} \to L$ for some $L \in [0, 1)$. Show that $x_n \to 0$ as $n \to +\infty$. What if L = 1, what can you conclude? Justify your answer by either proving this or giving a counter-example.