THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050B Mathematical Analysis I Tutorial 8 Date: 7 November, 2024

- 1. (a) State without proof, the Bolzano-Weierstrass Theorem.
 - (b) Show that a sequence (x_n) is convergent if and only if it is Cauchy.
- 2. Let a > 0 and $z_1 > 0$. Define $z_{n+1} := \sqrt{a+z_n}$ for $n \in \mathbb{N}$. By using monotone convergence theorem, show that (z_n) is convergent and find its limit.
- 3. Using εN , $\varepsilon \delta$ terminology or the sequential criterion to show that

(a)
$$\lim_{n \to +\infty} \frac{n^3 + 1}{2n^3 - 3} = \frac{1}{2};$$

(b) $\lim_{x \to 1} \frac{x^2 + 2}{x^3 - 2} = -3;$
(c) $\lim_{x \to 1} \frac{x}{x^2 - 1}$ does not exist.

- 4. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a function such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. If f has a limit L as $x \to 0$. Show that L = 0 and f has a limit at every $c \in \mathbb{R}$.
- 5. Suppose $f: (0, +\infty) \to \mathbb{R}$ is a real valued function such that $\forall \varepsilon > 0$, there exists $\alpha > 0$ such that

$$|f(x) - f(y)| < \varepsilon$$

for all $x, y \in [\alpha, +\infty)$. Show that there is $L \in \mathbb{R}$ such that $\lim_{x \to +\infty} f(x) = L$.

1. (a) State without proof, the Bolzano-Weierstrass Theorem.

(b) Show that a sequence (x_n) is convergent if and only if it is Cauchy.

2. Let a > 0 and $z_1 > 0$. Define $z_{n+1} := \sqrt{a+z_n}$ for $n \in \mathbb{N}$. By using monotone convergence theorem, show that (z_n) is convergent and find its limit.

For both cases, me can conclude that (Zy) converges by MCT. Taly N++DO in the recentrence relation, me get. => Z= 1±11+49 $Z = \sqrt{a+2} \implies Z^2 - 2 - a = 0$ So Z = 1+ 1+49 réject regative radi,

3. Using $\varepsilon - N$, $\varepsilon - \delta$ terminology or the sequential criterion to show that

(a)
$$\lim_{n \to \infty} \frac{n^3 + 1}{2n^3 - 3} = \frac{1}{2};$$
(b)
$$\lim_{x \to 1} \frac{x^3}{x^2 - 2} = -3;$$
(c)
$$\lim_{x \to 1} \frac{x}{x^2 - 1} \text{ does not exist.}$$

Ff: a) let $\varepsilon > 0$ be given.
 $\left| \frac{n^3 + 1}{2n^3 - 3} - \frac{1}{2} \right| = \left| \frac{2u^3 + 2}{4n^3} - 6 \right| = \left| \frac{-5}{4n^3 - 6} \right| \leq \left| \frac{5}{4n^3} \right|$
Then taily $N > \left(\frac{5}{4\varepsilon}\right)^3$ gives the desired vecitt.
b) let $\varepsilon > 0$ be given.
 $\left| \frac{x^2 + 2}{n^3 - 2} + 3 \right| = \left| \frac{x^2 + 2 + 3x^3 - 6}{n^3 - 2} \right| = \left| \frac{(x - U(3x^2 + 4x + 4))}{n^3 - 2} \right|$
 $\varepsilon [x - 1] \left| \frac{3x^2 + 4x + 4}{x^3 - 2} \right|$
So for $\frac{1}{2} < x < \frac{3}{2}$. (taly $d_1 = 1$)
we have the the for $3x^2 + 4x + 4$ | $x^3 - 2$ | εC for some constant C dopend on ε .
So taly $\delta = min \left| \frac{3d}{d_1}, \varepsilon \right|$ then we have the for $3 < |x - 1| < \delta$
we have $\left| \frac{x^2 + 2}{x^3 - 2} + 3 \right| < \varepsilon c$.

c) By subsequential criteria, suffices to choose (Kn) s.t. Xn->1, Xn+1 but Xn does not converge. Xy=1+1. Clearly Xn->1, and Xn+1, for each n. But $\frac{x_{u}}{x_{u}^{2}-1} = \frac{1+\frac{1}{u}}{(1+\frac{1}{u})^{2}-1} = \frac{(+\frac{1}{u})}{1+\frac{2}{u}+\frac{1}{u^{2}}-1} = \frac{1+\frac{1}{u}}{\frac{2}{u}+\frac{1}{u^{2}}} \leq N^{2}+N$, which dwienges,

4. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a function such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. If f has a limit L as $x \to 0$. Show that L = 0 and f has a limit at every $c \in \mathbb{R}$.

$$\begin{array}{l} & \text{Pf: Claim f sottsfies:} \\ & \text{I} \ f(0) = 0 & \text{:} \ f(0) = f(0+0) = f(0) + f(0) = 2f(0) = i \ f(0) = 0, \\ & \text{z} \ f(-x) = -f(x) \ for x \in \mathbb{R} : \ 0 = f(0) = f(x-x) = f(x) + f(-x) \\ & \text{J} \ for all \ n \in \mathbb{N}, \ f(nx) = nf(x) \ shaw \ by \ induction. \\ & \text{H} \ for all \ n \in \mathbb{N} \ . \ f(ix) = inf(x) : \\ & \text{H}(ix) = 1 \cdot f(\frac{x}{n}) = \frac{1}{n} \cdot n \ f(\frac{x}{n}) = \frac{1}{n} \ f(\frac{x}{n}) = \frac{1}{n} \ f(x) \\ & \text{Now show } L = 0. \end{array}$$

Finally, we next to show f has thirt at every CER. let
$$E > 0$$
 begins,
Men since $\lim_{x\to 0} F(x) = 0$, so $\exists \delta(E) > 0$ set. for all x with
 $0 < |x| < 8$, we have $|f(x)| < E$.
So for any $0 < |x-c| < 8$, we have
 $|f(x) - f(c)| = |f(x-c)| < E$.
So $\lim_{x\to c} f(x) = f(c)$.

5. Suppose $f: (0, +\infty) \to \mathbb{R}$ is a real valued function such that $\forall \varepsilon > 0$, there exists $\alpha>0$ such that $|f(x) - f(y)| < \varepsilon$

$$|f(x) - f(y)| < \varepsilon$$

for all $x, y \in [\alpha, +\infty)$. Show that there is $L \in \mathbb{R}$ such that $\lim_{x \to +\infty} f(x) = L$.

Pf: WTS
$$\exists (x_n)$$
 st. $f(x_n)$ is Cauchy,
For each n , $\exists x_n \in \mathbb{R}$ st. for all $x, y \ge 0$,
 $(f(x) - f(y)) \le \frac{1}{n}$.
We let $x_n \ge 0$,
We have that any sequence admits a monotonic subsequence.
So winds, we can take x_n to be viereasing.
So let ≥ 0 be quen, then by AP , $\exists N \in \mathbb{N}$.
St. $\frac{1}{N} < 2$, and for this \mathbb{N} , there is ∞ st. for all
 $x, y \ge 0$, $|f(x) - f(y)| \le 2$.
So in particular, for $n, m \ge \mathbb{N}$, 0 , 0 , 0 , 0 .
So that $|f(x_n) - f(x_m)| < 2$.
So $(f(0x_n))$ is Cauchy and hence inverges to some thirt,
say L . Let ≥ 0 be given. Then there is an $\alpha \in \mathbb{R}$ st.
for all $x, y \ge \alpha$, $(f(x) - f(y)| < \frac{2}{2}$.
By convergence of $(f(x_n))$, $\exists N \in \mathbb{N}$, st. $|f(x_n) - L| < \frac{2}{2}$.
So for $x \ge max \ge \mathbb{N}$, $\alpha \le 1$, we hence
 $|f(x) - L| \le |f(x) - f(x_n)| + |f(x_n) - L| < \frac{2}{2} + \frac{2}{2} = 2$.