THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050B Mathematical Analysis I Tutorial 7 Date: 24 October, 2024

1. (Exercise 3.5.2 of [BS11]) Show directly from the definition that the following are Cauchy sequences

(a)
$$\left(\frac{n+1}{n}\right)$$

(b) $\left(\frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}\right)$

- 2. (Exercise 3.5.9 of [BS11]) If 0 < r < 1 and $|x_{n+1} x_n| < r^n$ for all $n \in \mathbb{N}$, show that (x_n) is a Cauchy sequence.
- 3. Use either the $\varepsilon \delta$ definition of limit or the Sequential Criterion for limits, to establish the following:

(a)
$$\lim_{x \to 0} \frac{x^2}{|x|} = 0$$

(b) $\lim_{x \to 1} \frac{x^2 - x + 1}{x + 1} = \frac{1}{2}$
(c) $\lim_{x \to 0} \frac{1}{\sqrt{x}}$, $(x > 0)$ does not exist.

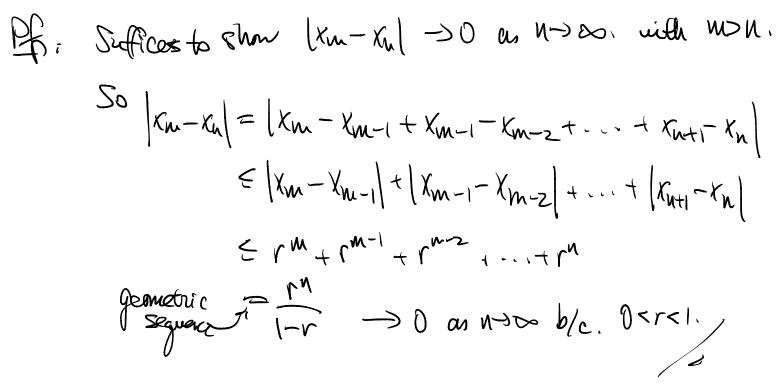
4. (Exercise 4.3.8 of [BS11]) Let f be defined on $(0, \infty)$ to \mathbb{R} . Prove that $\lim_{x \to \infty} f(x) = L$ if and only if $\lim_{x \to 0^+} f(1/x) = L$.

announcement: Mieltern 31/10 2:30 pm - 4:15 pm, Regn discussion est 2:55 pm. 1. (Exercise 3.5.2 of [BS11]) Show directly from the definition that the following are Cauchy sequences

(a)
$$\left(\frac{n+1}{n}\right)$$

(b) $\left(\frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}\right)$
If: a) U(2>0. Then notice that $\frac{n+1}{n} = 1 + \frac{1}{n}$.
Then WLOG assure $M > n$, then we have
 $\left|1 + \frac{1}{m} - 1 - \frac{1}{n}\right| = \left|\frac{1}{m} - \frac{1}{n}\right| \leq \frac{1}{m} + \frac{1}{n} \leq \frac{2}{n}$.
M>n
So taly $N > \frac{2}{2}$ unlos.
b) U(2>0 be quien, Again, assure $M > n$.
Note that for $k \geq 4$, $2^{k} \leq k!$.
Then
 $\left|\frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{m!} - \left(\frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}\right)\right|$
 $= \left|\frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots + \frac{1}{m!}\right|$
 $\leq \frac{1}{2^{n}} < \frac{1}{n}$. Then taly $N > \frac{1}{2}$ holds.

2. (Exercise 3.5.9 of [BS11]) If 0 < r < 1 and $|x_{n+1} - x_n| < r^n$ for all $n \in \mathbb{N}$, show that (x_n) is a Cauchy sequence.



3. Use either the $\varepsilon - \delta$ definition of limit or the Sequential Criterion for limits, to establish the following:

(a)
$$\lim_{x\to 1} \frac{x^2}{|x|} = 0$$

(b)
$$\lim_{x\to 1} \frac{x^2 - x + 1}{|x + 1|} = \frac{1}{2}$$

(c)
$$\lim_{x\to 0} \frac{1}{\sqrt{x}}, (x > 0) \text{ does not exist.}$$

P($f: e_{x}$) (at $\varepsilon > 0$ be given,
 $\left| \frac{x^2}{|x|} - 0 \right| = \left| \frac{x^2}{|x|} \right| = |x|$. So taky $\beta = \varepsilon$, we
have for all $0 < |x - 0| < \delta = \varepsilon$,
 $\left| \frac{x^2}{|x|} - 0 \right| = |x| < \delta = \varepsilon$.
b) (at $\varepsilon > 0$ be given.
 $\left| \frac{x^2 - k + 1}{|x + 1|} - \frac{1}{2} \right| = \left| \frac{(2x - 1)(k - 1)}{2(x + 1)} \right|$
 $\leq |(x - 1)| \frac{2x - 1}{2x + 2}$
Suice $k > 1$, can elementary take $0 < \frac{1}{2} < x$.
 $\leq |(x - 1)| \frac{2x}{2x}$
So taky $\delta = \varepsilon_{x}$, we have for $0 < |x - 1| < \delta$.

c) Show him to (x>0) DNE.	· · · · ·
By sequenceal criterie, suffices to show $\exists (x_n) \text{ s.t. } x_n > 0 \text{ are}$ $x_n \rightarrow 0 \text{ s.t.}$	
The Does not converge.	· · · · ·
Take $r_n = \frac{1}{n^2}$ Then $x_n > 0$ and $r_n \to 0$ as $N \to \infty$,	· · · · ·
and $\frac{1}{\sqrt{kn}} = \sqrt{\frac{1}{m^2}} = n$ which clearly duringer to the,	· · · · ·
VXN UN A	· · · · ·
	· · · · ·

4. (Exercise 4.3.8 of [BS11]) Let f be defined on $(0, \infty)$ to \mathbb{R} . Prove that $\lim_{x \to \infty} f(x) = L$ if and only if $\lim_{x \to 0^+} f(1/x) = L$.