THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050B Mathematical Analysis I Tutorial 6 Date: 17 October, 2024

- 1. (Exercise 3.4.12 of [BS11]) Show that if $\{x_n\}$ is unbounded, then there exists a subsequence $\{x_{n_k}\}$ such that $\lim \left(\frac{1}{x_{n_k}}\right) = 0$.
- 2. (Exercise 3.4.14 of [BS11]) Suppose $\{x_n\}$ is a sequence which is bounded from above. Let $s = \sup\{x_n\}$. Show that either $s = x_N$ for some $N \in \mathbb{N}$ sufficiently large, or that there is a subsequence x_{n_k} so that $x_{n_k} \to s$ as $k \to +\infty$.
- 3. (Exercise 3.4.15 of [BS11]) Let $\{I_n := [a_n, b_n]\}$ be a nested sequence of closed bounded intervals. For each $n \in \mathbb{N}$, let $x_n \in I_n$. Use the Bolzano-Weierstrass Theorem to prove the Nested Intervals Theorem.

2. (Exercise 3.4.12 of [BS11]) Show that if
$$\{x_n\}$$
 is unbounded, then there exists a subsequence $\{x_{n_n}\}$ such that $\lim_{x_{n_n}} \left(\frac{1}{x_{n_n}}\right) = 0$.
Pf: Construct incluctively. Since $\{x_n\}$ is unbounded, for call $M > 0$, can field an $n \in \mathbb{N}$ s.t. $|x_n| > M$.
Set $M = 1$. Then field $n_1 \in \mathbb{N}$ s.t. $|x_n| > 1$.
Set $M = 2$: $\{x_n\}_{n \ge n_1}$ is still an unbounded sequence
Then take $n_2 \in \mathbb{N}$ s.t.
 $|x_{n_2}| > \max_{n_2} \sum_{i=1}^{n} |x_{n_1}| \le 1$.
Eusing these $\{x_{n_k} \in \mathbb{N} \times \mathbb{K}, \{x_n\}_{n \ge n_{k-1}} \in \mathbb{K}$ still an unbounded
sequence and can take $n_k \in \mathbb{N}$ s.t.
 $|x_{n_k}| > \max_{n_k} \sum_{i=1}^{n} |x_{n_1}| \le |x_{n_1}| \le 1$.
So there $\{x_{n_{k-1}}\} \in [x_{n_{k-1}}] \in [x_{n_{k-1}}]$.
So there $\{x_{n_{k-1}}\} \in [x_{n_{k-1}}] \in [x_{n_{k-1}}] \in [x_{n_{k-1}}] \le 1$.
 $and any \sum_{i=1}^{n} |x_{n_{k-1}}| \le |x_{n_{k-1}}| \le 1$.
 $and any \sum_{i=1}^{n} |x_{n_{k-1}}| \le |x_{n_{k-1}}| \le 1$.
 $and and any \sum_{i=1}^{n} |x_{n_{k-1}}| \le 1$.
 $and an and any $\sum_{i=1}^{n} |x_{n_{k-1}}| \le 1$.
 $and any \sum_{i=1}^{n} |x_{n_{k-1}}| \le 1$.
 $and any \sum_{i=1}^{n} |x_{n_{k-1}}| \le |x_{n_{k-1}}| \le 1$.
 $and any x_{n_{k-1}}| \le |x_{n_{k-1}}| = 0$.$

3. (Exercise 3.4.14 of [BS11]) Suppose $\{x_n\}$ is a sequence which is bounded from above. Let $s = \sup\{x_n\}$. Show that either $s = x_N$ for some $N \in \mathbb{N}$ sufficiently large, or that there is a subsequence x_{n_k} so that $x_{n_k} \to s$ as $k \to +\infty$.

Pf: Spe
$$X_n \leq s$$
 for any NEN. Then we construct the desired
subsequence inductively with
 $Exm_n i \leq t \cdot x_{h_k} > s = \frac{1}{k}$.
Take $\varepsilon = 1$. Then pick $N_i \in N$ st. $K_{h_i} > s = 1$. b/c $s = sup i x_h i$
Sps K_{h_1}, \dots, K_{h_k} Bait $s \cdot I$. $K_{h_k} > s - \frac{1}{k}$ for $l = 1, \dots, k$
Next: $s \cdot L$. $K_{h_k + 1} > s - \frac{1}{k+1}$
Need to guarantee thest $M_{k+1} > M_k$
If we can shar that $s = sup i K_{h_i} + N M_k i$, then we can
freely take $M_{k+1} = s \cdot L_{h+1} = and M_{k+1} > M_k$.
Sup $i K_{h_i} + N N_k i \leq s \cdot X_{h_{k+1}} > s - \frac{1}{k+1} = and M_{k+1} > M_k$.
Sup $i K_{h_i} + N N_k i \leq s \cdot X_{h_{k+1}} > s - \frac{1}{k+1} = and M_{k+1} > M_k$.
Sup $i K_{h_i} + N N_k i \leq s \cdot X_{h_{k+1}} > s - \frac{1}{k+1} = and M_{k+1} > M_k$.
Sup $i K_{h_i} + N N_k i \leq s \cdot X_{h_{k+1}} > s - \frac{1}{k+1} = and M_{k+1} > M_k$.
Sup $i K_{h_i} + N N_k i \leq s \cdot X_{h_{k+1}} > s - \frac{1}{k+1} = and M_{k+1} > M_k$.
Sup $i K_{h_i} + N N_k i \leq s \cdot X_{h_{k+1}} > s - \frac{1}{k+1} = and M_{k+1} > M_k$.
Sup $i K_{h_i} + N N_k i \leq s \cdot X_{h_{k+1}} > s - M_k i \leq s \cdot X_{h_{k+1}} > S - M_k i \leq s \cdot X_{h_{k+1}}$

4. (Exercise 3.4.15 of [BS11]) Let $\{I_n := [a_n, b_n]\}$ be a nested sequence of closed bounded intervals. For each $n \in \mathbb{N}$, let $x_n \in I_n$. Use the Bolzano-Weierstrass Theorem to prove the Nested Intervals Theorem.