THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050B Mathematical Analysis I Tutorial 3 Date: 26 September, 2024

Field Axioms of real number:

A1. $a + b \in \mathbb{R}$ if $a, b \in \mathbb{R}$; A2. a + b = b + a if $a, b \in \mathbb{R}$; A3. $a + (b + c) = (a + b) + c \in \mathbb{R}$ if $a, b, c \in \mathbb{R}$; A4. There exists $0 \in \mathbb{R}$ such that a + 0 = a for all $a \in \mathbb{R}$; A5. For any $a \in \mathbb{R}$, there is $b \in \mathbb{R}$ such that a + b = 0; M1. $a \cdot b \in \mathbb{R}$ if $a, b \in \mathbb{R}$; M2. $a \cdot b = b \cdot a$ if $a, b \in \mathbb{R}$; M3. $a \cdot (b \cdot c) = (a \cdot b) \cdot c \in \mathbb{R}$ if $a, b, c \in \mathbb{R}$; M4. There exists $1 \in \mathbb{R} \setminus \{0\}$ such that $a \cdot 1 = a$ for all $a \in \mathbb{R}$; M5. For any $a \in \mathbb{R} \setminus \{0\}$, there is $b \in \mathbb{R}$ such that $a \cdot b = 1$; D. $a \cdot (b + c) = a \cdot b + a \cdot c$ if $a, b, c \in \mathbb{R}$.

1. (a) State the completeness of \mathbb{R} ;

(b) Using the axioms (and point out which axiom is used at each step), show that
i. (-a) · (-b) = a · b;
ii. 1/(-a) = -(1/a) if a ≠ 0.

· · · · · · · · · · · · · · · · · ·	$= a \cdot 1 + a \cdot (-1)$	<i>(Q)</i>		· · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	$= Q + Q \cdot (-1)$	(M4).	· · · · · · · · · · ·	· · · · · · · · · · · · · ·
>) by ung	queuess of addition	vinerse, a	$-(-1) = -\alpha$	
also weed: $(-1)^2 = 1$.	$(-1)^2 = (-1)^2 + 0$			
	=(-() ² +(-1):			· · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·			(def'n of squ	rome),
· · · · · · · · · · · · · · · · · · ·	$= (-1) \cdot (-1) +$; (-l)·l+l	(M4)	· · · · / · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	= (-1) ((-1)	_	(D)	· · · · · · · · · · · · · ·
	=(-1).0 +1		(A5)	
	= 0 + ((proved)	
· · · · · · · · · · · · · · · · ·			(A4)	· · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·		· · · · · · · · · · · · · ·

 $(-a) \cdot (-b) = a \cdot (-1) \cdot b \cdot (-1)$ (proved) (M2) $= (-1)^2 \cdot \alpha \cdot b$ (pronect) = 1.a.b = 0.6 $\overline{\mathcal{T}} = \frac{1}{-\alpha} - \left(-\frac{1}{\alpha}\right) = \frac{1}{\alpha(-1)} - \left(\frac{1}{\alpha}(-1)\right) \quad (\text{proved})$ $=\frac{1}{\alpha_{1}}\cdot\left(\frac{1}{-1}-(-1)\right)$ $=\frac{1}{a}$. (A5) (proved).

2. Suppose S is a bounded non-empty subset in \mathbb{R} .

- (a) Show that $\inf(-S) = -\sup S$ where $-S = \{-x : x \in \S\}$.
- (b) Show that $\sup S_0 \leq \sup S$ if S_0 is an non-empty subset of S.

b) So is nonempty by assurption, So ES and Sts bouded, Ro So is bounded: bondeel above. SIS bounded above, SS ZMER S.F. SEM for all SES let se So = 5 So in postocular so EM. Since So was allotrey Si is bounded above by M. By completeness axion, sup So asts in R. WTS rep So & sup S : Sps for the sale of contradiction theit sups < sups, Sie sups, is hub. of So, this means their sups is not an u.b. of So. So, we can fiel an sol So s.t. S> supS. But then since so ES, this contradict. the fact thet supS is an u.b. of S. (.

3. By considering $\mathcal{A} = \{x \in \mathbb{R} : x^2 + x < 3\}$, show that there exists $u \in \mathbb{R}$ such that u > 0 and $u^2 + u = 3$.

Pf: WTS
$$u = supple will sottefy u>0, and u=1.
First show u=supple exists.
Monempty: 12+1 = 2<3, so 16 × med 6 is vorempty.
bounded: 22+2 = 6>3. so 16 is bounded from above
by 2.
So by unpleteness arisin, u=sup 6 exists in A
2nd step: u>0; Svice 16 & and u is en. ub. of As
me here u>1>0.
Srd stop: u2+u=3.
First sps (22+u=3) => u2+u-3>0.
(antradiction we want: u-1/m is and u.b. of A:
 $(u-\frac{1}{m})^{2} + (u-\frac{1}{m}) > 3,$
 $(u-\frac{1}{m})^{2} + (u-\frac{1}{m}) = u^{2} - \frac{2u}{m} + \frac{1}{w^{2}} + u - \frac{1}{m}$
 $= u^{2}+u - \frac{1}{m}(2utt)$
So pick MEND st. $\frac{1}{m} < \frac{u^{2}+u-3}{2u+1}$.
Such a meth casts by use and not such me by A.$$

P.

So moth this molessen, me dotain $(u-\frac{1}{m})^{2} + (u-\frac{1}{m}) > u^{2} + u - \frac{u^{2} + u^{-3}}{(2u+1)} (2u+1)$ So u-tur is on u.b. of A, a contradiction Now she $n_{+}n < 3'$ $(u + \frac{1}{n})^2 + (u + \frac{1}{n}) = u^2 + \frac{2u}{n} + \frac{1}{n^2} + u + \frac{1}{n}$ $\leq u^2 + u + \frac{1}{h}(2u+2)$ Then since h>0, 2ut2>0, $3-u^2-u>0$, by A.P. FueNst. $\frac{1}{h} < \frac{3-u^2-u}{2ut2}$ and so

 $\left(u+\frac{1}{N}\right)^{2}+\left(u+\frac{1}{N}\right) \in U^{2}+U + \left(\frac{3-u^{2}-u}{2u+2}\right)\left(\frac{2u+2}{2u+2}\right)$ = 3 So ut he A, but dealy with ? U= sup A, a conoradichen, So by trochotomy proporty, UZ-11=3.