MATH2048: Honours Linear Algebra II 2024/25 Term 1

Tutorial 10

Enoch Ip

November 28, 2024

Key Concepts

Let $T: V \to V$ be a linear operator on V over \mathbb{C} , where dim $(V) < \infty$.

1. Jordan Canonical Form

- T is diagonalizable if f_T splits and $\gamma_T(\lambda_i) = \mu_T(\lambda_i)$ for all i.
- There exists a basis β such that

$$[T]_{\beta} = \begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_k \end{pmatrix}, \text{ where } A_i = \begin{pmatrix} \lambda_i & 1 & & \\ & \lambda_i & \ddots & \\ & & \ddots & 1 \\ & & & & \lambda_i \end{pmatrix}.$$

- $-\lambda_i$ are the eigenvalues of T (not necessarily distinct).
- $J = [T]_{\beta}$ is called the Jordan canonical form of T.
- $-A_i$ is called a *Jordan block* corresponding to λ_i .
- $-\beta$ is called the Jordan canonical basis.
- For a Jordan block A of size k with eigenvalue λ :
 - A has only one eigenvalue λ .
 - $-\dim(E_{\lambda})=1.$
 - The smallest $p \ge 1$ such that $(A \lambda I)^p$ is k, so $N((A \lambda I)^p) = \mathbb{C}^k$.
 - If $\{e_1, ..., e_k\}$ is the standard basis for \mathbb{C}^k , then $(A \lambda I)^i e_i = 0$ for $1 \le i \le k$.
- Generalized eigenvector: $x \in V \setminus \{0\}$ such that $(A \lambda I)^p x = 0$ for some $p \ge 1$.
- Generalized eigenspace: $K_{\lambda} := \{ x \in \mathbb{C}^n : (A \lambda I)^p x = 0 \text{ for some } p \ge 1 \}.$
- Jordan Decomposition Theorem: Let $A \in M_{n \times n}(\mathbb{C})$ with distinct eigenvalues $\lambda_1, ..., \lambda_k$ with corresponding multiplicities $m_1, ..., m_k$. Then
 - $-\dim(K_{\lambda_i})=m_i.$
 - $\mathbb{C}^n = K_{\lambda_1} \oplus \cdots \oplus K_{\lambda_k}.$
 - Each K_{λ_i} has a basis $\beta_i = \gamma_{1,i} \cup \cdots \cup \gamma_{l,i}$, where every $\gamma_{m,i}$ is a *cycle*:

$$\gamma_{m,i} = \{ (A - \lambda_i I)^{p-1} x, (A - \lambda_i I)^{p-2} x, ..., (A - \lambda_i I) x, x \}.$$

- Please refer to the lecture notes for a detailed proof.

Exercises

- 1. Let U be a linear operator on a finite-dimensional vector space V. Prove the following results.
 - (a) $N(U) \subseteq N(U^2) \subseteq \cdots \subseteq N(U^k) \subseteq N(U^{k+1}) \subseteq \cdots$.
 - (b) If $\operatorname{rank}(U^m) = \operatorname{rank}(U^{m+1})$ for some positive integer m, then $\operatorname{rank}(U^m) = \operatorname{rank}(U^k)$ and $N(U^m) = N(U^k)$ for any positive integer $k \ge m$.
 - (c) Let T be a linear operator on V, and let λ be an eigenvalue of T. Prove that if $\operatorname{rank}((T-\lambda I)^m) = \operatorname{rank}((T-\lambda I)^{m+1})$ for some integer m, then $K_{\lambda} = N((T-\lambda I)^m)$.
 - (d) Second Test for Diagonalizability. Let T be a linear operator on V whose characteristic polynomial splits, and let $\lambda_1, \lambda_2, ..., \lambda_k$ be the distinct eigenvalues of T. Then T is diagonalizable if and only if $\operatorname{rank}(T - \lambda_i I) = \operatorname{rank}((T - \lambda_i I)^2)$ for $1 \le i \le k$.
 - (e) Use (d) to prove that if T is a diagonalizable linear operator on a finite-dimensional vector space V and W is a T-invariant subspace of V, then T_W is diagonalizable.

2. Let V be the real vector space of functions spanned by the set of real-valued functions $\{1, t, t^2, e^t, te^t\}$, and T the linear operator on V defined by T(f) = f'. Find a basis for each generalized eigenspace of T consisting of a union of disjoint cycles of generalized eigenvectors. Then find a Jordan canonical form J of T.

3. Let $\gamma_1, \gamma_2, ..., \gamma_p$ be cycles of generalized eigenvectors of a linear operator T corresponding to an eigenvalue λ . Prove that if the initial eigenvectors are distinct, then the cycles are disjoint.