MATH2048: Honours Linear Algebra II 2024/25 Term 1

Tutorial 9

Enoch Ip

November 21, 2024

Key Concepts

Let $T: V \to V$ be a linear operator on V over F, where $F = \mathbb{R}$ or \mathbb{C} and $\dim(V) < \infty$.

1. Unitary and orthogonal operators

- T is unitary (if $F = \mathbb{C}$) or orthogonal (if $F = \mathbb{R}$) if ||T(x)|| = ||x|| for all $x \in V$.
- The condition (||T(x)|| = ||x|| for all $x \in V$) is equivalent to the following:
 - (a) $TT^* = T^*T = I$. (Used to define unitary and orthogonal matrices.)
 - (b) T preserves the inner product on V: $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for all $x, y \in V$.
 - (c) $T(\beta) := \{T(v_1), ..., T(v_n)\}$ is an o.n. basis for V for any o.n. basis β for V.
 - (d) \exists an o.n. basis β for V such that $T(\beta)$ is an o.n. basis for V.
 - (e) \exists an o.n. basis β such that $[T]_{\beta}$ is unitary (resp. orthogonal).
- Let $v_1, ..., v_n \in F^n$. Then $A = [v_1, ..., v_n] \in M_{n \times n}(F)$ is unitary (or orthogonal) iff $\{v_1, ..., v_n\}$ is an o.n. basis for \mathbb{C}^n (resp. \mathbb{R}^n).
- $A \in M_{n \times n}(\mathbb{C})$ is unitarily equivalent if $\exists P \in U(n)$ s.t. P^*AP is diagonal.
- $A \in M_{n \times n}(\mathbb{R})$ is orthogonally equivalent if $\exists P \in O(n)$ s.t. $P^T A P$ is diagonal.
- When $F = \mathbb{C}$, A is normal iff A is unitarily equivalent to a diagonal matrix.
- When $F = \mathbb{R}$, A is symmetric iff A is orthogonally equivalent to a diagonal matrix.

2. Spectral decomposition

- Orthogonal projection on $W: T(y) = \sum_{i=1}^{k} \langle y, v_i \rangle v_i$, which is linear and satisfies: - $N(T) = W^{\perp}$ and R(T) = W.
 - $-T^2 = T.$
 - -T is self-adjoint.
- Spectral decomposition: Let T is normal (resp. self-adjoint) and has distinct eigenvalues $\lambda_1, ..., \lambda_k$ (Spectrum of T). Let T_i be the orthogonal projection on $E_i := E_{\lambda_i}$.
 - (a) $V = E_1 \oplus E_2 \oplus \cdots \oplus E_k$
 - (b) $E_i^{\perp} = \bigoplus_{j \neq i} E_j$ for all $1 \le i \le k$
 - (c) $T_i T_j = \delta_{ij} T_i$ for all $1 \le i, j \le k$
 - (d) $I = T_1 + T_2 + \dots + T_k$
 - (e) $T = \lambda_1 T_1 + \lambda_2 T_2 + \dots + \lambda_k T_k$
- If $F = \mathbb{C}$, then T is normal iff $T^* = g(T)$ for some polynomial g.

Exercises

- 1. Let A and B be $n \times n$ matrices that are unitarily equivalent.
 - (a) Prove that $tr(A^*A) = tr(B^*B)$.
 - (b) Prove that

$$\sum_{i,j=1}^{n} |A_{ij}|^2 = \sum_{i,j=1}^{n} |B_{ij}|^2.$$

(c) Show that the matrices

$$\begin{pmatrix} 1 & 2 \\ 2 & i \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} i & 4 \\ 1 & 1 \end{pmatrix}$$

are not unitarily equivalent.

(d) Prove that A is positive definite (or semidefinite) if and only if B is positive definite (resp. semidefinite).

2. Let T be a normal operator on a finite-dimensional inner product space. Prove that if T is a projection, then T is also an orthogonal projection.

3. Prove that if T is a normal operator on a complex finite-dimensional inner product space and U is a linear operator that commutes with T, then U commutes with T^* .