MATH2048: Honours Linear Algebra II 2024/25 Term 1

Tutorial 8

Enoch Ip

November 7, 2024

Key Concepts

Let $T: V \to V$ be a linear operator on V over F, where $F = \mathbb{R}$ or \mathbb{C} and $\dim(V) < \infty$.

1. Adjoint of a linear operator

- For any $g \in \mathcal{L}(V, F)$, $\exists ! y \in V$ such that $g(x) = \langle x, y \rangle$ for all $x \in V$.
- Adjoint of $T: \exists ! T^* \in \mathcal{L}(V)$ such that $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$ for all $x, y \in V$.
- Suppose β is an orthonormal basis for V, then $[T^*]_{\beta} = ([T]_{\beta})^*$.
- If T has an eigenvector (corr. to λ), then T^* has an eigenvector (corr. to $\overline{\lambda}$).
- Please refer to lecture notes for the basic properties of adjoint.

2. Existence of orthonormal eigenbasis

- Schur decomposition: If f_T splits, then \exists o.n. basis β s.t. $[T]_{\beta}$ is upper triangular.
- T is normal if $TT^* = T^*T$. Examples:
 - T is unitary $(F = \mathbb{C})$ or orthogonal $(F = \mathbb{R})$ if $T^*T = TT^* = I$.
 - T is Hermitian (or self-adjoint) if $T^* = T$.
 - -T is skew-Hermitian (or anti-self-adjoint) if $T^* = -T$.
- Some properties when T is normal:
 - $\|T(x)\| = \|T^*(x)\|$
 - -T cI is normal for all $c \in F$
 - If $T(x) = \lambda x$, then $T^*(x) = \overline{\lambda} x$
 - If λ_1, λ_2 are distinct eigenvectors of T (corr. $x_1, x_2 \in V$), then x_1, x_2 orthogonal.
- Some properties when T is self-adjoint:
 - Every eigenvalue of T is real.
 - If $F = \mathbb{R}$, then f_T splits.
- When $F = \mathbb{C}$, T is normal iff there exists orthonormal eigenbasis of T for V.
- When $F = \mathbb{R}$, T is self-adjoint iff there exists orthonormal eigenbasis of T for V.

Exercises

- 1. Let V be an inner product space, and let T be a linear operator on V. Prove the following results.
 - (a) $R(T^*)^{\perp} = N(T).$
 - (b) If V is finite-dimensional, then $R(T^*) = N(T)^{\perp}$.

- 2. Let T be a linear operator on a finite-dimensional inner product space V. Prove the following results.
 - (a) $N(T^*T) = N(T)$. Deduce that $\operatorname{rank}(T^*T) = \operatorname{rank}(T)$.
 - (b) $\operatorname{rank}(T) = \operatorname{rank}(T^*)$. Deduce that $\operatorname{rank}(TT^*) = \operatorname{rank}(T)$.

3. Let T be a normal operator on a finite-dimensional real inner product space V. If f_T splits, prove that T is self-adjoint.