MATH2048: Honours Linear Algebra II 2024/25 Term 1

Tutorial 6

Enoch Ip

October 24, 2024

Key Concepts

Let $T: V \to V$ be a linear operator on V for the following section.

1. Invariant subspaces

- *T*-invariant subspace: A subspace $W \in V$ such that $T(W) \subseteq W$.
 - E.g.: $\{0\}, V, R(T), N(T), E_{\lambda}$
 - Let $\lambda_1, ..., \lambda_k$ be distinct eigenvalues of T. Is $\bigoplus E_{\lambda_i}$ T-invariant?
 - Define $T_W: W \to W$ by $T_W(w) = T(w)$. Then f_{T_W} divides f_T .
- T-cyclic subspace generated by x: $W = \text{span}(\{x, T(x), T^2(x), ...\} \subseteq V.$
 - -W is the smallest *T*-invariant subspace containing *x*.
 - Let $k = \dim(W) < \infty$, then $\{x, T(x), T^2(x), ..., T^k(x)\}$ is a basis for W.
 - If $a_0 x + a_1 T(x) + a_2 T^2(x) + \dots + a_{k-1} T^{k-1}(x) + T^k(x) = 0$, then $f_{T_W}(t) = (-1)^k (a_0 + a_1 t + a_2 t^2 + \dots + a_{k-1} t^{k-1} + t^k).$
- Cayley-Hamilton Theorem: Suppose $\dim(V) < \infty$, then $f_T(T) = T_0$.

Exercises

1. Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-invariant subspace of V. Suppose that $v_1, v_2, ..., v_k$ are eigenvectors of T corresponding to distinct eigenvalues. Prove that if $v_1 + v_2 + \cdots + v_k$ is in W, then $v_i \in W$ for all i.

2. Let T be a linear operator on an n-dimensional vector space V such that T has n distinct eigenvalues. Prove that V is a T-cyclic subspace of itself (i.e. there exists $x \in V$ such that V is the T-cyclic subspace generated by x).

3. Let T be a linear operator on a vector space V, let v be a nonzero vector in V, and let W be the T-cyclic subspace of V generated by v. For any $w \in V$, prove that $w \in W$ if and only if there exists a polynomial g(t) such that w = g(T)(v).