MATH2048: Honours Linear Algebra II 2024/25 Term 1

Tutorial 4

Enoch Ip

October 3, 2024

Key Concepts

We assume $T: V \to W$ is a linear transformation unless otherwise stated. In addition, let β and γ be ordered bases of V and W respectively.

1. Invertibility and isomorphism

- If T invertible (i.e. T^{-1} exists), then $\dim(V) < \infty$ iff $\dim(W) < \infty$. In this case, $\dim(V) = \dim(W)$.
- Suppose V and W are finite-dimensional (so that $[T]^{\gamma}_{\beta}$ is a well-defined matrix). Then T is invertible iff $[T]^{\gamma}_{\beta}$ is invertible, and $[T^{-1}]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^{-1}$.
- V is *isomorphic* to W if there exists an invertible linear transformation $T: V \to W$. Then T is an *isomorphism* from V onto W.
- Suppose $\dim(V)$, $\dim(W) < \infty$. Then V is isomorphic to W iff $\dim(V) = \dim(W)$.

2. Space of linear transformations

- Denote $\mathcal{L}(V, W)$ as the space of all linear transformations from V to W.
- Suppose V and W are finite-dimensional (so that $[T]^{\gamma}_{\beta}$ is a well-defined matrix). Then $\Phi : \mathcal{L}(V, W) \to M_{m \times n}(F)$ defined by $\Phi(T) = [T]^{\gamma}_{\beta}$ is an isomorphism. So $\dim(\mathcal{L}(V, W)) = \dim(V) \cdot \dim(W)$.

3. Change of coordinates

• Let $I_V: V \to V$ be the identity map on V, and β, β' be ordered bases of V. Then $Q = [I_V]^{\beta}_{\beta'}$ is the *change of coordinate matrix* from β' to β as

$$[v]_{\beta} = [I_V(v)]_{\beta} = [I_V]_{\beta'}^{\beta}[v]_{\beta'} = Q[v]_{\beta'}$$

• Note that I_V is invertible $\Rightarrow Q$ is invertible, and $Q^{-1} = [I_V]^{\beta'}_{\beta}$. (Why?) Then

$$[T]_{\beta} = [I_V \circ T \circ I_V]_{\beta} = [I_V]_{\beta'}^{\beta} [T]_{\beta'} [I_V]_{\beta}^{\beta'} = Q^{-1} [T]_{\beta'} Q.$$

• $[T]_{\beta}$ and $[T]_{\beta'}$ are similar.

Exercises

- 1. Prove the following linear transformations are isomorphisms.
 - (a) $\Phi: M_{n \times n}(F) \to M_{n \times n}(F)$ defined by $\Phi(A) = B^{-1}AB$.
 - (b) $T: P_n(F) \to F^{n+1}$ defined by $T(f) = (f(c_0), f(c_1), ..., f(c_n))$, where $c_0, c_1, ..., c_n \in F$ are distinct scalars, and F is an infinite field.

- 2. Let V and W be vector spaces, and let S be a subset of V. Define $S^0 = \{T \in \mathcal{L}(V, W) : T(x) = 0 \text{ for all } x \in S\}$. Prove the following statements.
 - (a) S^0 is a subspace of $\mathcal{L}(V, W)$.
 - (b) If S_1 and S_2 are subsets of V and $S_1 \subseteq S_2$, then $S_2^0 \subseteq S_1^0$.
 - (c) If V_1 and V_2 are subspaces of V, then $(V_1 + V_2)^0 = V_1^0 \cap V_2^0$.

3. Let V be a finite-dimensional vector space over a field F, and let $\beta = \{x_1, x_2, ..., x_n\}$ be an ordered basis for V. Let Q be an $n \times n$ invertible matrix with entries from F. Define

$$x'_j = \sum_{i=1}^n Q_{ij} x_i \quad \text{for } 1 \le j \le n,$$

and set $\beta' = \{x'_1, x'_2, ..., x'_n\}$. Prove that β' is a basis for V and hence that Q is the change of coordinate matrix from β' to β .

- 4. Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by T(a,b) = (2a+b,a-b). Let $\beta_1 = \{(-1,3), (2,-1)\}$ and $\beta_2 = \{(0,2), (1,0)\}$ be ordered bases of \mathbb{R}^2 , and β be the standard ordered basis of \mathbb{R}^2 .
 - (a) Find $[T]_{\beta}, [I]_{\beta_1}^{\beta}, [I]_{\beta_2}^{\beta}$, and $[I]_{\beta_1}^{\beta_2}$.
 - (b) Express $[T]_{\beta_1}, [T]_{\beta_2}$, and $[T]_{\beta_1}^{\beta_2}$ as the matrices above. Compute them for practice.