MATH2048: Honours Linear Algebra II 2024/25 Term 1

Tutorial 3

Enoch Ip

September 26, 2024

Key Concepts

We assume $T: V \to W$ is a linear transformation unless otherwise stated.

1. Linear transformation: Null space and range

- Null space $N(T) := \{v \in V : T(v) = 0\}$ is a subspace of V, Nullity $(T) = \dim(N(T))$.
- Range $R(T) := \{T(v) : v \in V\}$ is a subspace of W, Rank $(T) = \dim(R(T))$
- (Rank-Nullity Theorem) $\dim(V) = \operatorname{nullity}(T) + \operatorname{rank}(T)$ if $\dim(V) < \infty$. Remarks: W could be infinite-dimensional!

2. Matrix representation of linear transformation

• Let $\beta = \{v_j\}_{1 \le j \le n}$ and $\gamma = \{w_i\}_{1 \le i \le m}$ be ordered bases of V and W respectively.

• If
$$v = \sum_{j=1}^{n} \alpha_j v_j$$
, then $[v]_{\beta} = (\alpha_1, ..., \alpha_n)^T \in F^n$.

• If
$$T(v_j) = \sum_{i=1}^{m} a_{ij} w_i$$
, then

$$[T]_{\beta}^{\gamma} = (a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} | & & | \\ [T(v_1)]_{\gamma} & \cdots & [T(v_n)]_{\gamma} \\ | & & | \end{pmatrix} \in F^{m \times n}.$$

• $[T(v)]_{\gamma}$ is a linear combination of column vectors of $[T]_{\beta}^{\gamma}$ with coefficients $[v]_{\beta}$:

$$[T(v)]_{\gamma} = \left[\sum_{j=1}^{n} \alpha_j T(v_j)\right]_{\gamma} = \sum_{j=1}^{n} [T(v_j)]_{\gamma} \cdot \alpha_j = [T]_{\beta}^{\gamma} [v]_{\beta}$$

3. Composition of linear transformation

• Let $T: V \to W$ and $U: W \to Z$ be linear transformations, α, β, γ be the ordered bases of V, W, Z respectively, then UT is linear, and

$$[UT]^{\gamma}_{\alpha} = [U]^{\gamma}_{\beta} \ [T]^{\beta}_{\alpha} \in F^{|\gamma| \times |\alpha|}$$

Exercises

1. Let $\beta = \{1, 1 + x, 1 + x^2, 1 + x^3\}$ be an ordered basis of $P_3(\mathbb{R})$, and $\gamma = \{e_{11}, e_{12}, e_{21}, e_{22}\}$ be the standard ordered basis of $\mathbb{R}^{2 \times 2}$. Define $T : P_3(\mathbb{R}) \to \mathbb{R}^{2 \times 2}$ by

$$T(f) = \begin{pmatrix} f'(0) & 2f(1) \\ 0 & f''(1) \end{pmatrix}.$$

- (a) Find $[T]^{\gamma}_{\beta}$ and N(T).
- (b) Let $f(x) = 1 3x + 2x^3$, find $[T(f)]_{\gamma}$.
- (c) Let $U: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ be a linear transformation defined by U(B) = AB, where

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

Find $[U]_{\gamma}$ and $[UT]_{\beta}^{\gamma}$. What is N(UT)?

2. Let V and W be vector spaces such that $\dim(V) = \dim(W) < \infty$, and let $T : V \to W$ be linear. Show that there exist bases β and γ for V and W respectively, such that $[T]^{\gamma}_{\beta}$ is a diagonal matrix.

- 3. Let V be a finite-dimensional vector space, and let $T: V \to V$ be linear.
 - (a) If rank $(T) = \operatorname{rank}(T^2)$, prove that $R(T) \cap N(T) = \{0\}$. Deduce that $V = R(T) \oplus N(T)$.
 - (b) Prove that $V = R(T^k) \oplus N(T^k)$ for some positive integer k.