MATH2048: Honours Linear Algebra II 2024/25 Term 1

Tutorial 2

Enoch Ip

September 19, 2024

Key Concepts

1. Quotient spaces

- $V/W = \{v + W : v \in V\}$, where $v + W = \{v + w : w \in W\}$ is called a coset of W in V.
- v + W is a subset of V. Moreover, it is a subspace of V if and only if $v \in W$. (Prove it in HW 2 Q2(a))

2. Existence of basis using Zorn's Lemma

- Zorn's Lemma: Let S be a partially ordered set. If every chain C of S has an upper bound in S, then S contains a maximal element.
 (Why only require the upper bound to be in S but not C?)
- Let S be the collection of linearly independent subsets of V. Then S is partially ordered under \subseteq , and for all chain $\mathcal{C} = \{L_{\alpha}\}_{i \in I}$ in S, we know that $\bigcup_{\alpha} L_{\alpha}$ is an upper bound of \mathcal{C} and is linearly independent (i.e. in S) (Why?).
- Then, there exists a maximal element M which is linearly independent and spans V. So, M is a basis of V.

3. Linear transformation

- A map $T: V \to W$ is linear if it satisfies the following:
 - Addition:
 - Multiplication:
- Some properties:

$$- T(0_V) = 0_W - T(\sum_{i=1}^n a_i v_i) = \sum_{i=1}^n a_i T(v_i)$$

Exercises

1. Prove the following generalization of the replacement theorem: Let β be a basis for a vector space V, and let S be a linearly independent subset of V. Then there exists a subset S_1 of β such that $S \cup S_1$ is a basis for V.

2. Recall that in Lecture Notes 5 P. 7, we try to prove there exists a minimal spanning set of V inside a collection C of all spanning sets via Zorn's Lemma. The proof is invalid as the infinite intersection of decreasing spanning sets in a chain may not be a spanning set. Construct an example for that.

3. Let $C(\mathbb{R})$ be the space of real-valued continuous functions. Let a, b be real numbers such that a < b. Define $T : C(\mathbb{R}) \to \mathbb{R}$ by

$$T(f) = \int_{a}^{b} f(x)g(x)dx$$

where $g \in C(\mathbb{R})$. Prove that T is a linear transformation.

4. Let V be a vector space and U, W be subspaces of V such that $U \oplus W = V$. Define $T: U \to V/W$ by T(u) = u + W. Prove that T is a well-defined linear transformation. Also, prove that T is bijective.