MATH2048: Honours Linear Algebra II 2024/25 Term 1

Tutorial 1

Enoch Ip

September 12, 2024

Key Concepts

1. Vector spaces and subspaces (over a field F)

- Closed under addition and scalar multiplication (What are VS1 VS8? Why?)
- How to prove a subspace? How to disprove a subspace?
- Are they vector spaces?
 - (a) \mathbb{R}^n over \mathbb{R} , \mathbb{Q}^n over \mathbb{Q} , \mathbb{Z}^n over \mathbb{Z}
 - (b) \mathbb{C}^n over \mathbb{R} , \mathbb{R}^n over \mathbb{Q} , \mathbb{Z}^n over \mathbb{F}_p

2. Linear combinations, span, linear independence, bases and dimensions

- Linear combination: $a_1v_1 + \ldots + a_nv_n$
- Linear independence: $a_1v_1 + ... + a_nv_n = 0$ implies $a_i = 0$ for all iIf a nontrivial solution exists, then $v_1, ..., v_n$ are linearly dependent.
- span $(\{v_1, ..., v_n\}) = \{a_1v_1 + ... + a_nv_n : a_i \in F\}$
- β is a basis of V if span(β) = V and β is linearly independent. Then dim(V) = $|\beta|$.
- Prove that $\{1, 1 + x, 1 + x + x^2\}$ is a basis of $P_2(x)$.
- Prove that $\{10+x, 27+2x^2, -6+5x-1.5x^2, x \log 3 7x^2\}$ is not a basis of $P_2(x)$.

3. Sums, direct sums and products

- U + V =
- $U \times V =$
- What are the differences between $U \cup V$, U + V, $U \oplus V$ and $U \times V$?
- Is $\{e_k\}_{k=1}^{\infty}$ a basis for $\bigoplus_{k=1}^{\infty} F$ and $\prod_{k=1}^{\infty} F$?

Exercises

1. Given that V, the set of sequences $\{a_n\}$ of real numbers, is a vector space. Show that the set of convergent sequences $\{a_n\}$ is a subspace of V.

2. Let V be a vector space over a field of characteristic not equal to 2. If $u, v, w \in V$, show that $\{u, v, w\}$ is linearly independent if and only if $\{u + v, v + w, w + u\}$ is linearly independent.

3. Suppose n is a positive integer. For $0 \le k \le n$, let

$$p_k(x) = x^k (1-x)^{n-k}.$$

Show that $p_0, ..., p_n$ is a basis of $\mathcal{P}_n(F)$.

4. Let V be a vector space with dimension n. Suppose $d_1, ..., d_k \ge 1$ be integers such that $\sum_{i=1}^k d_i = n$. Prove that there exist subspaces $U_1, ..., U_k$ such that

$$\bigoplus_{i=1}^{k} U_i = V$$
$$\dim(U_i) = d_i.$$