MATH2048: Honours Linear Algebra II 2024/25 Term 1

Midterm Examination 2

Please show all your steps, unless otherwise stated. Answer all five questions.

1. Let T_n be a linear operator on \mathbb{R}^n for all positive integers $n \geq 2$. Define T_n by

$$T_n(e_i) = e_{i+1}$$
 for all $i = 1, 2, ..., n$,

where $\{e_i\}$ is the standard ordered basis of \mathbb{R}^n and we write $e_{n+1} = e_1$.

- (a) Find all the eigenvalues and corresponding eigenspaces of T_2 , then determine whether T_2 is diagonalizable.
- (b) Prove that T_n is not diagonalizable for all $n \ge 3$.
- 2. Let T be a linear operator on $P_2(\mathbb{R})$ defined by

$$T(a + bx + cx^{2}) = a(-1 + 3x + 3x^{2}) + b(3x + x^{2}) + c(-x + x^{2}).$$

- (a) Find a polynomial $f \in P_2(\mathbb{R})$ such that $T^3 = f(T)$.
- (b) Let $g(x) = 3x + 2x^2$ and W is the T-cyclic subspace generated by g. Find dim(W) and the characteristic polynomial of T_W .
- 3. Let V and W be nonzero vector spaces over the same field, and let $T: V \to W$ be a linear transformation. Prove that the dual map $T^*: W^* \to V^*$ is onto if and only if T is one-to-one.
- 4. Let T and U be diagonalizable linear operators on a finite-dimensional vector space V. Prove that if UT = TU, then UT is diagonalizable. *Hint*: Prove that U and T are simultaneously diagonalizable.
- 5. Suppose T is a linear operator on a finite-dimensional vector space V.
 - (a) Prove that if λ is an eigenvalue of T, then λ^m is an eigenvalue of T^m for all positive integers $m \ge 2$.
 - (b) Prove the converse of (a): If λ^m is an eigenvalue of T^m for all positive integers $m \ge 2$, then λ is an eigenvalue of T. *Hint*: Suppose the statement is not true, prove that for all coprime positive integers x, y (i.e. gcd(x, y) = 1), if $T^x(v_1) = \lambda^x v_1$ and $T^y(v_2) = \lambda^y v_2$ for some non-zero vectors $v_1, v_2 \in V$, then v_1, v_2 are linearly independent. *You may also use this fact without proof*: For all coprime positive integers x, y, there exist positive integers a, b such that ax - by = 1.
 - (c) Prove or disprove the converse of (a) if V is infinite-dimensional.

END OF PAPER