MATH2048: Honours Linear Algebra II 2024/25 Term 1

Midterm Examination 1

Please show all your steps, unless otherwise stated. Answer all five questions.

1. Let $T: P_n(\mathbb{R}) \to P_n(\mathbb{R})$ be defined by T(f(x)) = f(x) - f'(x).

- (a) Prove that T is linear, and it is an isomorphism.
- (b) Consider n = 2, and let $\beta = \{1, x, x^2\}$ and $\gamma = \{1, 1+x, 1+x+x^2\}$ be ordered bases of $P_2(\mathbb{R})$. Let $f(x) = x^2 - 2x + 4$. Find $[f]_{\beta}$, then compute $[f]_{\gamma}$ using the change of coordinate matrix.
- (c) Is it true that $[T]_{\beta}[f]_{\beta} = [T]_{\gamma}[f]_{\gamma}$? Please explain your answer with all the details.
- 2. Given the matrix

$$A = \begin{pmatrix} 3 & 3 & 9 \\ -6 & 3 & 0 \\ -1 & \frac{-5}{2} & -6 \end{pmatrix}.$$

Define the linear transformation $L_A : \mathbb{R}^3 \to \mathbb{R}^3$ by $L_A(x) = Ax$.

- (a) Find $R(L_A)$ and $N(L_A)$, then determine whether or not $\mathbb{R}^3 = R(L_A) \oplus N(L_A)$.
- (b) Define $\widetilde{L_A}: M_{3\times 3}(\mathbb{R}) \to M_{3\times 3}(\mathbb{R})$ by $\widetilde{L_A}(B) = AB$. Find rank $(\widetilde{L_A})$ and nullity $(\widetilde{L_A})$.
- 3. Let T_1 and T_2 be linear maps from V to W, where V and W are vector spaces over \mathbb{F} . Suppose both V and W are finite-dimensional. Prove that $\operatorname{nullity}(T_1) = \operatorname{nullity}(T_2)$ if and only if there exists invertible linear maps $R: V \to V$ and $S: W \to W$ such that $T_1 = ST_2R$.
- 4. Let V be a vector space, and W be a subspace of V. Using Zorn's Lemma, prove that there is a linearly independent subset $\beta \subset V$, such that $V = \operatorname{span}(\beta) \oplus W$. Please explain your answer with all the details.
- 5. Let V be the subspace of \mathbb{R}^{∞} defined by

$$V = \{ (x_1, x_2, \dots) \in \mathbb{R}^\infty : x_k \neq 0 \text{ for finitely many } k \},\$$

and for all positive integers n, let W_n be subsets of V defined by

$$W_n = \{(x_1, x_2, ...) \in V : \sum_{k=1}^n k^2 x_k = 0 \text{ and } x_i = 0 \text{ for all } i > n\}.$$

- (a) Show that W_n is a subspace of V for all positive integers n, then show that $\bigcup_{n=1} W_n$ is also a subspace of V.
- (b) Find dim $\left(V / \bigcup_{n=1}^{\infty} W_n\right)$. Please explain your answer with all the details.
- (c) Prove or disprove: V is isomorphic to $\bigcup_{n=1}^{\infty} W_n$.