MATH2048: Honours Linear Algebra II 2024/25 Term 1

Homework 9

Problems

Please give reasons for your solutions to the following homework problems. Submit your solution in PDF via the Blackboard system before **2024-11-22** (Friday) 23:59.

- 1. Let T and U be self-adjoint linear operators on an inner product space V. Prove that TU is self-adjoint if and only if TU = UT.
- 2. Assume that T is a linear operator on a complex (not necessarily finite-dimensional) inner product space V with an adjoint T^* . Prove the following results.
 - (a) If T is self-adjoint, then $\langle T(x), x \rangle$ is real for all $x \in V$.
 - (b) If T satisfies $\langle T(x), x \rangle = 0$ for all $x \in V$, then $T = T_0$.
 - (c) If $\langle T(x), x \rangle$ is real for all $x \in V$, then $T = T^*$.
- 3. Let T be a self-adjoint operator on a finite-dimensional inner product space V. Prove that for all $x \in V$

$$||T(x) \pm ix||^2 = ||T(x)||^2 + ||x||^2.$$

- (a) Deduce that T iI is invertible and that $[(T iI)^{-1}]^* = (T + iI)^{-1}$.
- (b) Prove that $(T + iI)(T iI)^{-1}$ is unitary.
- 4. Let W be a finite-dimensional subspace of an inner product space V. Define $U: V \to V$ by $U(v_1 + v_2) = v_1 v_2$, where $v_1 \in W$ and $v_2 \in W^{\perp}$. Prove that U is a self-adjoint unitary operator.
- 5. Let W be a finite-dimensional subspace of an inner product space V. Show that if T is the orthogonal projection of V on W, then I T is the orthogonal projection of V on W^{\perp} .

Exercises

The following are extra recommended exercises not included in the homework.

1. Let V be a complex inner product space, and let T be a linear operator on V. Define

$$T_1 = \frac{1}{2}(T + T^*)$$
 and $T_2 = \frac{1}{2i}(T - T^*).$

- (a) Prove that T_1 and T_2 are self-adjoint and that $T = T_1 + iT_2$.
- (b) Suppose also that $T = U_1 + iU_2$, where U_1 and U_2 are self-adjoint. Prove that $U_1 = T_1$ and $U_2 = T_2$.
- (c) Prove that T is normal if and only if $T_1T_2 = T_2T_1$.
- 2. Let V be a finite-dimensional inner product space, and let T be a linear operator on V. If T is invertible, then T^* is invertible and $(T^*)^{-1} = (T^{-1})^*$.
- 3. Let T be a normal operator on a finite-dimensional complex inner product space V, and let W be a subspace of V. If W is T-invariant, then W is also T^* -invariant.
- 4. Let U be a unitary operator on an inner product space V, and let W be a finitedimensional U-invariant subspace of V. Prove that
 - (a) U(W) = W;
 - (b) W^{\perp} is U-invariant.
- 5. Let U be a linear operator on a finite-dimensional inner product space V. If ||U(x)|| = ||x|| for all x in some orthonormal basis for V, must U be unitary? Justify your answer with a proof or a counterexample.
- 6. If T is a unitary operator on a finite-dimensional inner product space V, then T has a unitary root; that is, there exists a unitary operator U such that $T = U^2$.