MATH2048: Honours Linear Algebra II 2024/25 Term 1

Homework 8

Problems

Please give reasons for your solutions to the following homework problems. Submit your solution in PDF via the Blackboard system before **2024-11-08** (Friday) 23:59.

- 1. Let $V = \mathbb{C}^3$, $S = \{(1, i, 0), (1 i, 2, 4i)\} \subset V$.
 - (a) Find an orthonormal basis for $\operatorname{span}(S)$.
 - (b) Extend S to get an orthonormal basis S' of V.
 - (c) Let x = (3 + i, 4i, -4). Prove that $x \in \text{span}(S)$.
- 2. Let W_1 and W_2 be subspaces of a finite-dimensional inner product space. Prove that $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$ and $(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$.
- 3. Let V be the vector space of all sequence σ in F (where $F = \mathbb{R}$ or \mathbb{C}) such that $\sigma(n) \neq 0$ for only finitely many positive integers n. For $\sigma, \mu \in V$, we define

$$\langle \sigma, \mu \rangle = \sum_{n=1}^{\infty} \sigma(n) \overline{\mu(n)}$$

Since all but a finite number of terms of the series are zero, the series converges.

- (a) Prove that $\langle \cdot, \cdot \rangle$ in an inner product on V, and hence V is an inner product space.
- (b) For each positive integer n, let e_n be the sequence defined by $e_n(k) = \delta_{n,k}$, where $\delta_{n,k}$ is the Kronecker delta. Prove that $\{e_1, e_2, ...\}$ is an orthonormal basis for V.
- (c) Let $\sigma_n = e_1 + e_n$ and $W = \operatorname{span}(\{\sigma_n : n \ge 2\}).$
 - i. Prove that $e_1 \notin W$, so $W \neq V$.
 - ii. Prove that $W^{\perp} = \{0\}$, and conclude that $W \neq (W^{\perp})^{\perp}$.
- 4. Let V and $\{e_1, e_2, ...\}$ be defined as in Q3. Define $T: V \to V$ by

$$T(\sigma)(k) = \sum_{i=k}^{\infty} \sigma(i)$$
 for every positive integer k.

Note that the infinite series in the definition of T converges because $\sigma(i) \neq 0$ for only finitely many *i*.

- (a) Prove that T is a linear operator on V.
- (b) Prove that for any positive integer $n, T(e_n) = \sum_{i=1}^{n} e_i$.
- (c) Prove that T has no adjoint.
- 5. Prove that if $V = W \oplus W^{\perp}$ and T is the projection on W along W^{\perp} , then $T = T^*$.

Exercises

The following are extra recommended exercises not included in the homework.

- 1. In each of the following parts, find the orthogonal projection of the given vector on the given subspace W of the inner product space V. Then find the distance from the given vector to the subspace W.
 - (a) $V = \mathbb{R}^2, u = (2, 6), \text{ and } W = \{(x, y) : y = 4x\}.$
 - (b) $V = \mathbb{R}^3, u = (2, 1, 3), \text{ and } W = \{(x, y, z) : x + 3y 2z = 0\}.$
 - (c) $V = P(\mathbb{R})$ with the inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$, $h(x) = 4 + 3x 2x^2$, and $W = P_1(\mathbb{R})$.
- 2. Let β be a basis for a finite-dimensional inner product space.
 - (a) Prove that if $\langle x, z \rangle = 0$ for all $z \in \beta$, then x = 0.
 - (b) Prove that if $\langle x, z \rangle = \langle y, z \rangle$ for all $z \in \beta$, then x = y.
- 3. Let V = C([-1, 1]). Suppose that W_e and W_o denote the subspaces of V consisting of the even and odd functions, respectively. Prove that $W_e^{\perp} = W_o$, where the inner product on V is defined by

$$\langle f,g\rangle = \int_{-1}^{1} f(t)g(t)dt$$

- 4. Let V be an inner product space over F. Prove the *polar identities*: For all $x, y \in V$,
 - (a) $\langle x, y \rangle = \frac{1}{4} ||x + y||^2 \frac{1}{4} ||x y||^2$ if $F = \mathbb{R}$.
 - (b) $\langle x, y \rangle = \frac{1}{4} \sum_{k=1}^{4} i^{k} ||x + i^{k}y||^{2}$ if $F = \mathbb{C}$, where $i = \sqrt{-1}$.
- 5. Let A be an $n \times n$ matrix with complex entries. Prove that $AA^* = I$ if and only if the rows of A form an orthonormal basis of \mathbb{C}^n .
- 6. Let $V = F^n$ and let $A \in M_{n \times n}(F)$.
 - (a) Prove that $\langle x, Ay \rangle = \langle A^*x, y \rangle$ for all $x, y \in F$.
 - (b) Suppose that for some $B \in M_{n \times n}(F)$, we have $\langle x, Ay \rangle = \langle Bx, y \rangle$ for all $x, y \in V$. Prove that $B = A^*$.
 - (c) Let α be the standard ordered basis for V. For any orthonormal basis β for V, let Q be the $n \times n$ matrix whose columns are the vectors in β . Prove that $Q^* = Q^{-1}$.
 - (d) Define linear operators T and U on V by T(x) = Ax and $U(x) = A^*x$. Show that $[U]_{\beta} = [T]_{\beta}^*$ for any orthonormal basis β for V.