MATH2048: Honours Linear Algebra II 2024/25 Term 1

Homework 7

Problems

Please give reasons for your solutions to the following homework problems. Submit your solution in PDF via the Blackboard system before **2024-11-01** (Friday) 23:59.

- 1. Let T be a linear operator on a finite-dimensional vector space V.
 - (a) Prove that if the characteristic polynomial of T splits, then so does the characteristic polynomial of the restriction of T to any T-invariant subspace of V.
 - (b) Deduce that if the characteristic polynomial of T splits, then any nontrivial T-invariant subspace of V contains an eigenvector of T.
- 2. Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-cyclic subspace of V generated by a nonzero vector v. Let $k = \dim(W)$. Prove the following statements.
 - (a) $\{x, T(x), T^2(x), ..., T^{k-1}(x)\}$ is a basis for W.
 - (b) If $a_0 x + a_1 T(x) + a_2 T^2(x) + \dots + a_{k-1} T^{k-1}(x) + T^k(x) = 0$, then $f_{T_W}(t) = (-1)^k (a_0 + a_1 t + a_2 t^2 + \dots + a_{k-1} t^{k-1} + t^k).$
- 3. Let T be a linear operator on a vector space V, and suppose that V is a T-cyclic subspace of itself (i.e. there exists $x \in V$ such that V is the T-cyclic subspace generated by x). Prove that if U is a linear operator on V, then UT = TU if and only if U = g(T) for some polynomial g(t).
- 4. Let V be an inner product space over F. Prove the following statements.
 - (a) If x, y are orthogonal, then $||x + y||^2 = ||x||^2 + ||y||^2$.
 - (b) Parallelogram law: $||x + y||^2 + ||x y||^2 = 2||x||^2 + 2||y||^2$ for all $x, y \in V$.
 - (c) Let $v_1, v_2, ..., v_k$ be an orthogonal set in V, and let $a_1, a_2, ..., a_k \in F$, then

$$\|\sum_{i=1}^{k} a_i v_i\|^2 = \sum_{i=1}^{k} |a_i|^2 \|v_i\|^2.$$

5. Let T be a linear operator on an inner product space V, and suppose that ||T(x)|| = ||x|| for all x. Prove that T is one-to-one.

Exercises

The following are extra recommended exercises not included in the homework.

- 1. Let T be a linear operator on a vector space V, and let $W_1, W_2, ..., W_k$ be T-invariant subspaces of V.
 - (a) Prove that $\bigcap_{i=1}^{k} W_i$ is *T*-invariant.
 - (b) Prove that $W_1 + W_2 + \cdots + W_k$ is *T*-invariant.
 - (c) Suppose V is finite-dimensional and $V = \bigoplus_{i=1}^{i} W_i$. Prove that T is diagonalizable if and only if T_{W_i} is diagonalizable for all i.
- 2. Let T be a linear operator on a two-dimensional vector space V. Prove that either V is a T-cyclic subspace of itself or $T = cI_V$ for some $c \in F$.
- 3. Let \mathcal{C} be a collection of diagonalizable linear operators on a finite-dimensional vector space V. Prove that there is an ordered basis β such that $[T]_{\beta}$ is a diagonal matrix for all $T \in \mathcal{C}$ if and only if the operators of \mathcal{C} commute under composition.
- 4. Use the Cayley-Hamilton theorem to prove its corollary for matrices.
- 5. Let A be an $n \times n$ matrix. Prove that dim(span($\{I_n, A, A^2, ...\}$)) $\leq n$.
- 6. In \mathbb{C}^2 , show that $\langle x, y \rangle = xA^*y$ is an inner product, where

$$A = \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}$$

Compute (x, y) for x = (1 - i, 2 + 3i) and y = (2 + i, 3 - 2i).

- 7. Suppose $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$ are two inner products in a vector space V. Prove that $\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_1 + \langle \cdot, \cdot \rangle_2$ is another inner product on V.
- 8. Let V be a vector space over F, where $F = \mathbb{R}$ or \mathbb{C} , and let W be an inner product space over F with inner product $\langle \cdot, \cdot \rangle$. If $T : V \to W$ in linear, prove that $\langle x, y \rangle' = \langle T(x), T(y) \rangle$ defines an inner product on V if and only if T is one-to-one.