MATH2048: Honours Linear Algebra II 2024/25 Term 1

Homework 5

Problems

Please give reasons for your solutions to the following homework problems. Submit your solution in PDF via the Blackboard system before **2024-10-18** (Friday) 23:59.

- 1. Define $f \in (\mathbb{R}^2)^*$ by f(x, y) = 2x + y and $T : \mathbb{R}^2 \to \mathbb{R}^2$ by T(x, y) = (3x + 2y, x).
 - (a) Compute $T^*(f)$.
 - (b) Let β be the standard ordered basis for \mathbb{R}^2 and $\beta^* = \{f_1, f_2\}$ be the dual basis. Compute $[T^*]_{\beta^*}$ by expressing $T^*(f_1)$ and $T^*(f_2)$ as linear combinations of f_1 and f_2 .
 - (c) What is the relationship between $[T]_{\beta}$ and $[T^*]_{\beta^*}$?
- 2. Prove that a function $T: F^n \to F^m$ is linear if and only if there exist $f_1, f_2, ..., f_m \in (F^n)^*$ such that $T(x) = (f_1(x), f_2(x), ..., f_m(x))$ for all $x \in F^n$.
- 3. Let V an W be finite-dimensional vector spaces over F. Let $\psi_1 : V \to V^{**}$ be defined by $\psi_1(v)(f) = f(v)$ for all $f \in V^*$ and $\psi_2 : W \to W^{**}$ be defined by $\psi_2(w)(g) = g(w)$ for all $g \in W^*$. Note that ψ_1 and ψ_2 are isomorphisms. Let $T : V \to W$ be linear, and define $T^{**} = (T^*)^*$. Prove that $\psi_2 T = T^{**}\psi_1$.
- 4. Given the matrix

$$A = \begin{pmatrix} 0 & -2 & -3 \\ -1 & 1 & -1 \\ 2 & 2 & 5 \end{pmatrix}.$$

- (a) Find the characteristic polynomial $f_A(x)$, then prove that $f_A(x)$ splits.
- (b) Determine all the eigenvalues of A, then find the set of eigenvectors corresponding to λ for each eigenvalue λ of A.
- (c) Show that there exist a basis for \mathbb{R}^3 consisting of eigenvectors of A, then find an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D$.
- 5. Let T be a linear operator on a vector space V over the field F, and let g(t) be a polynomial with coefficients from F.
 - (a) Prove that if x is an eigenvector of T with corresponding eigenvalue λ , then $g(T)(x) = g(\lambda)(x)$. That is, x is an eigenvector of g(T) with corresponding eigenvalue $g(\lambda)$.
 - (b) Let f_T be the characteristic polynomial of T. Prove that if T is diagonalizable, then $f(T) = T_0$, the zero operator. (We will see that this result does not depend on the diagonalizability of T in later sections.)

Exercises

The following are extra recommended exercises not included in the homework.

- 1. For each of the following vector spaces V and ordered bases β , find explicit formulas for vectors of the dual basis β^* for V^* .
 - (a) $V = \mathbb{R}^3$; $\beta = \{(1, 0, 1), (1, 2, 1), (0, 0, 1)\}$

(b)
$$V = P_2(\mathbb{R}); \beta = \{1, x, x^2\}$$

2. Let $V = \mathbb{R}^3$, and define $f_1, f_2, f_3 \in V^*$ as follows:

$$f_1(x, y, z) = x - 2y, \quad f_2(x, y, z) = x + y + z, \quad f_3(x, y, z) = y - 3z$$

Prove that $\{f_1, f_2, f_3\}$ is a basis for V^* , and then find a basis for V for which it is a dual basis.

3. Let $V = P_1(\mathbb{R})$ and $W = \mathbb{R}^2$ with respective standard bases β and γ . Define $T: V \to W$ by

$$T(p(x)) = (p(0) - 2p(1), p(0) + p'(0)),$$

where p'(x) is the derivative of p(x).

- (a) For $f \in W^*$ defined by f(a, b) = a 2b, compute $T^*(f)$.
- (b) Compute $[T]^{\gamma}_{\beta}$ and $[T^*]^{\beta^*}_{\gamma^*}$ independently.
- 4. Let $V = P_n(F)$, and let $c_0, c_1, ..., c_n$ be distinct scalars in F.
 - (a) For $0 \le i \le n$, define $f_i \in V^*$ by $f_i(p(x)) = p(c_i)$. Prove that $\{f_0, f_1, ..., f_n\}$ is a basis for V^* .
 - (b) Show that there exist unique polynomials $p_0(x), p_1(x), ..., p_n(x)$ such that $p_i(c_j) = \delta_{ij}$ for $0 \le i \le n$. (Hint: Lagrange polynomials)
 - (c) For any scalars $a_0, a_1, ..., a_n$ (not necessarily distinct), find the polynomial q(x) of degree at most n such that $q(c_i) = a_i$ for $0 \le i \le n$ and show that q(x) is unique.
- 5. Let T be a linear operator on a vector space V.
 - (a) Suppose V is finite-dimensional. Prove that T is invertible if and only if zero is not an eigenvalue of T.
 - (b) Suppose T is invertible. Prove that a scalar λ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1} .
- 6. Let $A, B \in M_{n \times n}(\mathbb{C})$.
 - (a) Prove that if B is invertible, then there exists a scalar $c \in \mathbb{C}$ such that A + cB is not invertible. Hint: Examine $\det(A + cB)$.
 - (b) Find nonzero 2×2 matrices A and B such that both A and A + cB are invertible for all $c \in \mathbb{C}$.