MATH2048: Honours Linear Algebra II 2024/25 Term 1

Homework 2

Problems

Please give reasons for your solutions to the following homework problems. Submit your solution in PDF via the Blackboard system before **2024-09-20** (Friday) 23:59.

- 1. Let V and W be vector spaces over the field F, and let $S_1 = \{v_1, ..., v_n\}$ and $S_2 = \{w_1, ..., w_n\}$ with n > 1 be sets of vectors in V and W respectively. Consider the direct product $V \times W$.
 - (a) Prove or disprove: If S_1 and S_2 are linearly independent in U and V respectively, then $\{(v_1, w_1), ..., (v_n, w_n)\}$ is linearly independent in $V \times W$.
 - (b) Prove the following statement in the general case or give a counterexample with some specific V and W: If $\{(v_1, w_1), ..., (v_n, w_n)\}$ is linearly independent in $V \times W$, then S_1 and S_2 are linearly independent in U and V respectively.
- 2. Let V be a vector space with subspace W. Consider the set $V/W = \{v + W : v \in V\}$.
 - (a) Prove that v + W is a subspace if and only if $v \in W$.
 - (b) Prove that addition and scalar multiplication are well-defined in V/W. That is, if v + W = v' + W, then for any $v'' + W \in V/W$, we have

$$(v+W) + (v''+W) = (v'+W) + (v''+W)$$

 $a \cdot (v+W) = a \cdot (v'+W).$

- (c) Hence, prove that V/W is a vector space over F with the addition and scalar multiplication defined above.
- (d) Prove or disprove: If $v_1 + W$ and $v_2 + W$ is linearly independent in V/W, then v_1 and v_2 are linearly independent in V.
- 3. Suppose $W = \{(x, y, x, y) \in F^4 \mid x, y \in F\}$, where F is a field.
 - (a) Prove that W is a subspace of $V = F^4$. What is the dimension of W?
 - (b) Suggest a basis for V/W.
- 4. Let V be the space of all functions from \mathbb{N} to \mathbb{Z}_2 that are zero outside a finite subset of \mathbb{N} . Suggest a basis for V. Suppose we do not allow infinite sum. Then, could you find a countable basis for $\mathcal{F}(\mathbb{N}, \mathbb{Z}_2)$, which contains all functions from \mathbb{N} to \mathbb{Z}_2 ? Please explain. (Remark: \mathbb{Z}_2 is the field with two elements 0 and 1.)

Exercises

The following are extra recommended exercises not included in the homework.

- 1. What are the relationships between projection operators, direct sums, direct products, and quotient spaces?
- 2. Given the matrix

$$A = \begin{pmatrix} 3 & 5 & 1\\ 6 & 10 & 2\\ 1 & 2 & 0 \end{pmatrix}$$

- (a) Find the null space N(A).
- (b) Find the quotient space $\mathbb{R}^3 / N(A)$.
- 3. Suppose that U is a subspace of V such that V/U is finite-dimensional.
 - (a) Show that if W is finite-dimensional subspace of V and V = U + W, then dim $W \ge \dim V/U$.
 - (b) Prove that there exists a finite-dimensional subspace W of V such that dim $W = \dim V/U$ and $V = U \oplus W$.
- 4. Let $V = \mathbb{C}^3$ and $W = M_{2 \times 2}(\mathbb{C})$ be vector spaces over \mathbb{R} . Is $V \times W$ well-defined? If yes, state its dimension and suggest a basis for $V \times W$.
- 5. Let W_1 be the space of $n \times n$ matrices over \mathbb{R} whose trace is zero. The trace of a square matrix is defined as the sum of its diagonal entries. Find a subspace W_2 such that $\mathbb{R}^{n \times n} = W_1 \oplus W_2$. (Hint: consider the nature of matrices in W_1 and what kind of matrices are not in W_1 .)
- 6. Let U be a subspace of $P_n(\mathbb{R})$ such that f(0) = 0 for all $f \in U$.
 - (a) Show that U is a subspace of $P_n(\mathbb{R})$.
 - (b) Describe the quotient space $P_n(\mathbb{R})/U$.