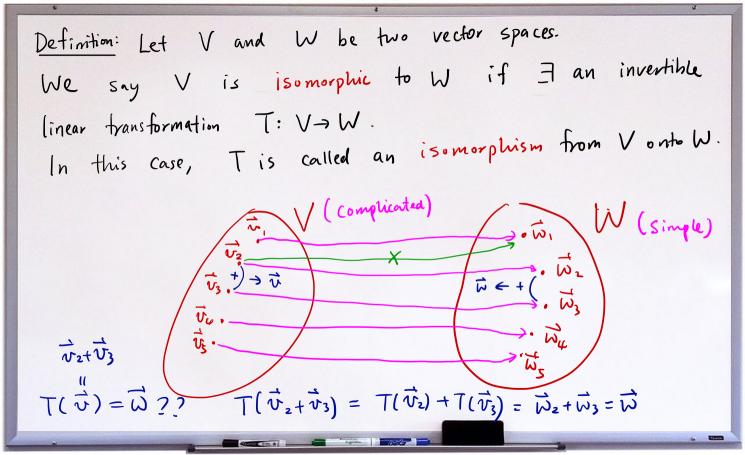
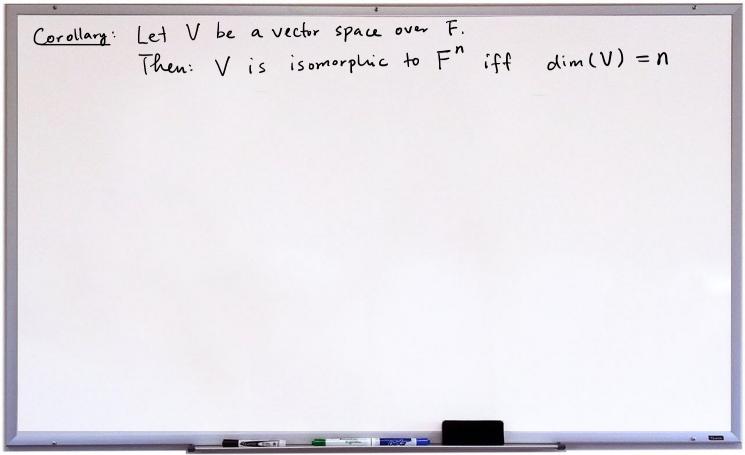
Lecture 9: Recall: Invertibility and Isomorphism Let V and W be vector spaces and let T:V-W be linear. • T is invertible : ∃T': W > V such that: $T^{-1} \circ T = Iv$ and $T \circ T^{-1} = Iw$ (. T is bijective) • If T is invertible, T is linear. Pf: Let WI, WZEW and CEF. '.' T is invertible : $\exists \vec{v}_1, \vec{v}_2$ such that $\vec{w}_1 = T(\vec{v}_1)$ and $\vec{w}_2 = T(\vec{v}_2)$. Then: $T^{-1}(c\vec{w}_1 + \vec{w}_2) = T^{-1}(cT(\vec{v}_1) + T(\vec{v}_2)) = T^{-1}(T(c\vec{v}_1 + \vec{v}_2))$ (',' T is linear) $= C_1 \overrightarrow{v}_1 + \overrightarrow{v}_2$ $= G T^{-1}(\tilde{w}_{1}) + T^{-1}(\tilde{w}_{2})$

, T' is linear.

Suppose T: V→W is invertible. Then: dim(V)<+∞ iff dim(W)<+∞ And in this case, dim(V) = dim(W)

• Let V and W be finite - dimensional vector spaces with ordered basis β and β respectively. Then: T is invertible iff $[T]_{\beta}^{\gamma}$ is invertible. Also, $[T^{-1}]_{\gamma}^{\beta} = ([T]_{\beta}^{\gamma})^{-1}$



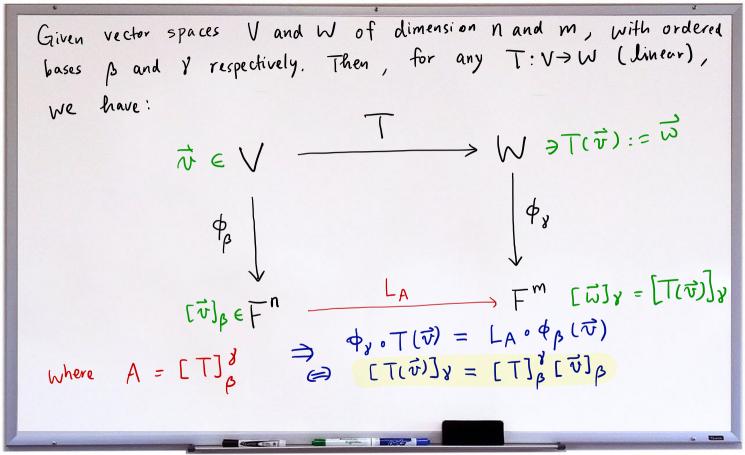


Space of linear transformation Let V and W be vector spaces over F. Then: the set (L(V,W)) of all linear transformations Prop: from V to W is a vector space over F under the following operations: for linear $T, U: V \rightarrow W$, we define: (T+U): V > W by (T+U)(x) = T(x)+U(x) and for any a EF, we define a T: V > W by $(aT)(\vec{x}) = aT(\vec{x})$

Thm: Let V and W be finite-dimensional vector spaces over F.
with dimension N and M respectively. Let B and S be the
ordered bases for V and W respectively.
Then: the map
$$\underline{\Psi}: \mathcal{L}(V, W) \longrightarrow M_{mxn}(F)$$
 defined
by $\underline{\Psi}(T) = [T]_{\mathcal{B}}^{S}$ is an isomorphism.
Cor: $\dim(\mathcal{L}(V, W)) = \dim(V) \dim(W) = NM$.

Provef:
$$\overline{\Phi}$$
 is kinear : $\overline{\Phi}(T+U) = [T+U]_{p}^{\gamma} = [T]_{p}^{\gamma} + [U]_{p}^{\gamma}$
 $\overline{\Phi}(aT) = [aT]_{p}^{\gamma} = a[T]_{p}^{\gamma}$
 $\overline{\Phi}(aT) = [aT]_{p}^{\gamma} = a[T]_{p}^{\gamma}$
 $\overline{\Phi}(aT) = \overline{P}(T)$.
 $\overline{\Phi}(aT) = [aT]_{p}^{\gamma}$
 $\overline{\Phi}(T) = a[T]_{p}^{\gamma}$
 $\overline{\Phi}(T)$.
 $\overline{\Phi}(T) = a[T]_{p}^{\gamma}$
 $\overline{\Phi}(T)$.
 $\overline{\Phi}(T) = a[T]_{p}^{\gamma}$
 $\overline{\Phi}(T)$.
 $\overline{\Phi}(T) = A$.
 $T(\overline{v}_{p}) = \sum_{i=1}^{m} A_{ij} \overline{w}_{i}$ for $j=1,2...,m$
 $\beta = \{\overline{v}_{i}, \overline{v}_{2}, ..., \overline{v}_{n}\}$, $\gamma = \{\overline{w}_{i}, ..., \overline{w}_{n}\}$
 $\beta = \{\overline{v}_{i}, \overline{v}_{2}, ..., \overline{v}_{n}\}$, $\gamma = \{\overline{w}_{i}, ..., \overline{w}_{n}\}$
 $\overline{\Phi}(T) = A$. (Orto)
 $\overline{M}_{mm}(F)$ (-1)
 $\overline{\Phi}$ is bijective,

Def Let β be the ordered basis for an n-dimensional vector space.
V over F. The map
$$\varphi_{\beta}: V \rightarrow F^{n}$$
, $\overline{x} \mapsto [x]_{\beta}$ is
called standard representation of V with respect to β.
Prop: φ_{β} is an isomorphism,



Change of coordinates
Prop: Let β and β' be two ordered bases for a finite-dim.
vector space V, and let Q = [Iv]^β_{β'}. V Iv V
Then: (a) Q is invertible
(b) For all
$$\vec{v} \in V$$
, $[\vec{v}]_{\beta} = Q[\vec{v}]_{\beta'}$
Proof: (a) Since Iv is invertible, Q is invertible.
b) Let $\vec{v} \in V$. Then: $[\vec{v}]_{\beta} = [Iv(\vec{v})]_{\beta} = [Iv]^{\beta}_{\beta'}[\vec{v}]_{\beta'}$
Def: The matrix Q = $[Iv]^{\beta'}_{\beta'}$ is called the Q
change of coordinate matrix from β' to β .

$$\frac{\text{Remark}:}{\text{To compute } Q = C \text{Iv} J_{\beta'}^{\beta}, \\ \text{I, } \beta = \tilde{z} \tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_n J \text{ and } \beta' = \tilde{z} \tilde{x}_1', \tilde{x}_2' \dots, \tilde{x}_n' J, \\ \text{Hen:} \qquad Q = \begin{pmatrix} I \\ \Gamma v(\tilde{x}_1') J_{\beta} & - & - \\ J & J \end{pmatrix} \\ = \begin{pmatrix} C \tilde{x}_1' J_{\beta} & - & C \tilde{x}_3' J_{\beta} & \dots \\ I & J & J \end{pmatrix}$$

Propusition: Let T be a linear operator on finite-dim V Let β and β' be ordered bases of V. Suppose $Q = [Iv]_{\beta'}^{\beta}$. $[T]_{p'} = Q^{T}[T]_{p}Q$ Then: $\bigvee^{\mu} \xrightarrow{T} \bigvee^{\mu} \xrightarrow{P} (T)_{\mu}$ $\frac{P_{root}}{Q} [T]_{\beta'} = [I_{v}]_{\beta'}^{\beta} [T]_{\beta'}^{\beta'} = [I_{v} \cdot T]_{\beta'}^{\beta}$ $\bigvee^{\beta'} \xrightarrow{T} \bigvee^{\beta'} \longrightarrow^{\sigma} CT$ $= [T \cdot I_v]_{\beta'}$ $V \xrightarrow{I_{\nu}} V \xrightarrow{T} V$ $\beta' \quad \beta \quad \beta$ $= [T]_{\rho}^{\rho} [I_{\nu}]_{\rho}^{\rho}$ = [T]_BQ Remark: A linear T: V -> V is called linear operator.

Corollary: Let
$$A \in M_{n\times n} (F)$$
 and let $\vartheta = \{\overline{x}_1, \overline{x}_2, ..., \overline{x}_n\}$ be
an ordered basis for F^n .
Then: $[L_A]_{\vartheta} = Q^{-1}A \otimes Q = (\overbrace{1}^{l} \overbrace{1}^{l} \overbrace{2}^{l} - - \overbrace{1}^{l} \overbrace{n})$
 $() [L_A]_{\vartheta} = O^{-1}[L_A]_{B} \bigcirc Q$
standard
ordered
basis.

Example: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection about the line y=2X. Want to compute $[T]_{p}$, where $\beta = \{(0), (0)\}_{p}$ Consider $\beta' = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}$ for \mathbb{IR}^2 (-2,1) 7 (1,2) $[T]_{\beta'} = \left([T(\frac{1}{2})]_{\beta'} [T(\frac{-2}{1})]_{\beta'} \right)$ $= \begin{pmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} & \begin{bmatrix} 1 \\ 2 \end{bmatrix} &$ $Q = \left[I_{R^2} \right]_{\beta'}^{\beta} = \left(\begin{array}{cc} 1 & -2 \\ 2 & 1 \end{array} \right) \implies Q^{-1} = \frac{1}{5} \left(\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array} \right)$

$$i \quad [T]_{p'} = \vec{O}[T]_{p} Q$$

$$(\Rightarrow \quad [T]_{p} = Q \ [T]_{p'} Q^{-1} = \frac{1}{5} \ (-3 \ 4) \\ (\frac{1}{6} \ -1)$$

$$\underbrace{Pef: Given two matrices A, B \in Mnxn (F).}_{We say B is \underline{similar} + A if \exists Q \in Mnxn st.}_{B = Q^{-1} A Q.}$$

-