Lecture 8
Recall
Matrix representation
Notatim: An ordered basis for a finite-dimensional vector space V
is a basis for V endowed with a specific order.
(e.g.
$$[R^2 \quad \{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \} \neq \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \} \}$$
 as
ordered
B:
Definition: Let V be a finite-dimensional vector space and
 $\beta = \{ \overline{u}_1, \overline{u}_2, ..., \overline{u}_n \}$ be an ordered basis for V.
Then, $\forall \overline{x} \in V, \exists ! a_1, a_2, ..., a_n \in F$ s.t. $\overline{x} = \sum_{i=1}^{n} a_i \overline{u}_i$.
The coordinate vector of \overline{x} relative to β , denoted as $[\overline{x}]_{\beta}$,
is the column vector $[\overline{x}]_{\beta} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix} \in F^n$

Recall: $\beta = \{ \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \}$ for V $\gamma = \{ \vec{w}_1, \vec{w}_2, \dots, \vec{w}_m \}$ for W $= \left[\left[T(\vec{v}_{1}) \right]_{g} \left[T(\vec{v}_{2}) \right]_{g} \right]$ [T]^x_b $\left[T(\overline{v}_{n}) \right]_{v}$ Mmxn n

Corollang: Let V and W be finite-dimensional vector spaces
with ordered basis B and & respectively.
Let T: V > W be linear. Then: for any
$$\vec{u} \in V$$
, we have.
 $[T(\vec{u})]_{y} = [T]_{p}^{y} [\vec{u}]_{p}$
 W
 $Matrix multiplication$
Lin. Transf.

-

T: M2x2(IR) → M2x2(IR) defined by: Example: $T(A) \stackrel{\text{def}}{=} A^T + 2A$. $\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ $\begin{bmatrix} T \end{bmatrix}_{\beta} = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$ $\begin{bmatrix} -1 & -1 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \\ -1 & 0 & 0 \\ -1$

Invertibility and isomorphism
Lemma: Suppose
$$T: V \rightarrow W$$
 is invertible.
(T is invertible means there exists a linear transformation
($T^{-1}: W \rightarrow V$ such that $T \circ T^{-1} = I_W$ and $T^{-1} \circ T = I_V$)
Then: dim(V) < +co iff dim(W) < +co
And in this case, dim(V) = dim(W)
Remark: If T is linear and invertible, T^{-1} is also linear.
Pf: Let $W_1, W_2 \in W$ and $c \in F$.
('T is invertible :: $\exists v_1, v_2$ such that $W_1 = T(v_1)$ and $W_2 = T(v_2)$.
Then: $T^{-1}(cw_1 + w_2) = T^{-1}(cT(v_1) + T(v_2))$ (','T is linear)
 $= C_1 v_1 + v_2$
('T is linear.

Proof: Suppose
$$\dim(V) = n < +\infty$$
 and $p = \{\overline{x}_{1}, \dots, \overline{x}_{n}\}$ is
a basis for V . Then: $W = R(T) = \operatorname{span}\{T(p)\}$
 $\dim(W) \leq n = \dim(V) < +\infty = \operatorname{span}\{T(\overline{x}_{1}), \dots, T(\overline{x}_{n})\}$
Apply the same argument to T^{-1} to show that
 $\dim(V) \leq \dim(W)$
In particular, if $\dim(V) < +\infty$ and $\dim(W) < +\infty$ $\dim(W)$
then = $\dim(V) \leq \dim(W)$ and $\dim(W) \leq \dim(V) (=) \dim(V)$

-

Proposition: Let V and W be finite-dimensional vector spaces
with ordered basis
$$\beta$$
 and β respectively.
Let T: V \rightarrow W be linear transformation.
Then. T is invertible iff $[T]_{\beta}^{\gamma}$ is invertible.
Furthermore, $[T^{-1}]_{\beta}^{\beta} = ([T]_{\beta}^{\beta})^{-1}$

-

Proof: Suppose Tis invertible. Then: dim (V) = dim (W) = n $I_n = [I_w]_y = [T_o T^{-1}]_y$ Since $T \cdot T^{-1} = I_W$, $I_n = [T]_{\beta}^{\gamma} [T^{-1}]_{\gamma}^{\beta}$ $W \xrightarrow{T^{-}} V \xrightarrow{T} W$ $I_{n} = [I_{v}]_{\beta} = [T^{-1} \circ T]_{\beta}$ $I_{n} = [T^{-1}]_{\beta}^{\beta} [T]_{\beta}^{\gamma}$ Similarly, ToT=IV. $\therefore [T]_{\beta}^{\gamma}$ is invertible and $([T]_{\beta}^{\gamma})^{-1} = [T^{-1}]_{\gamma}^{\beta}$.

Conversely, suppose A:= ETJ⁸ is invertible. (=> dim(V)=dim(w)) i din(V) = dim(W)in We only need to show Tis one-to-one, So, suppose $T(\vec{x}_1) = T(\vec{x}_2)$ $\Leftrightarrow [T(\vec{x}_1)]_y = [T(\vec{x}_2)]_y$ $\Rightarrow [T]_{\beta}^{\gamma} [\overline{x}_{1}]_{\rho} = [T]_{\rho}^{\gamma} [\overline{x}_{2}]_{\rho}$ $\Rightarrow [\bar{x}_1]_{\beta} = [\bar{x}_2]_{\beta} \Rightarrow \bar{x}_1 = \bar{x}_2$ (1)

Corollary: Let V be a finite-dimensional vector space with ordered
basis
$$\beta$$
. Let T: V-2V be a linear transformation.
Then: T is invertible iff ETJp is invertible
Furthermore, $ET^{-1}Jp = (ETJp)^{-1}$, $ELAJp \in \frac{standard}{basis}$ ordered
Corollary: Let A \in Moxm(F). Then = A is invertible
iff L_A is invertible. $(L_A)^{-1} = L_{A^{-1}}$
 $(I[A]Jp = (ILAJp)^{-1} = A^{-1} = [LA^{-1}Jp]$
 $(I[A]Jp = (ILAJp)^{-1} = L_{A^{-1}}$

