Lecture 6:

-

Recall:

2

1

Now, let
$$\vec{u}, \vec{v} \in R(T)$$
 and $a \in F$.
Then: $\exists \vec{x}, \vec{y} \in V$ such that $\vec{u} = T(\vec{x})$ and $\vec{v} = T(\vec{y})$
So, $T(\vec{x}+\vec{y}) = T(\vec{x}) + T(\vec{y}) = \vec{u} + \vec{v} \Rightarrow \vec{u} + \vec{v} \in R(T)$
 $T(a\vec{x}) = aT(\vec{x}) = a\vec{u} \Rightarrow a\vec{u} \in R(T)$
 $\therefore R(T)$ is a subspace of W .

1

2

(
$$\Leftarrow$$
) Suppose N(T) = $\overline{2} \overline{0} \sqrt{3}$
Let $\overline{x}, \overline{y} \in V$ such that $T(\overline{x}) = T(\overline{y})$.
Then: $T(\overline{x}) - T(\overline{y}) = T(\overline{x} - \overline{y}) = \overline{0}$
This implies $\overline{x} - \overline{y} \in N(T) = \overline{0} \sqrt{3}$
 $\therefore \quad \overline{x} - \overline{y} = \overline{0} \sqrt{0} \text{ or } \quad \overline{x} = \overline{y}$.
 $\therefore \quad T \text{ is } 1 - 1$.

-

$$\begin{array}{c} Proof: & (I, T(\vec{v}_{j}) \in RLT) \quad fir \quad j=1,2,...,n\\ and \quad R(T) \quad is \quad subspace \\ \vdots \quad Span \ i \ T(\vec{v}_{1}), T(\vec{v}_{2}),..., T(\vec{v}_{n}) \ j \quad C \ RLT)\\ \hline R(T) \quad R(T) \quad R(T) \\ R(T) \quad R(T) \\ \end{array}$$

$$\begin{array}{c} (onversely \ , \ (et \quad \vec{w} \in RLT) \quad where \quad \vec{x} \in V. \\ T(\vec{x}) \\ Then: \quad \exists \ a_{1}, a_{2}, ..., a_{n} \in F \quad s.t. \quad \vec{x} = \sum_{j=1}^{n} a_{j} \ \vec{v}_{j} \\ S_{p}, \quad \vec{w} = T(\vec{x}) = T\left(\sum_{j=1}^{n} a_{j} \ \vec{v}_{j}\right) = \sum_{j=1}^{n} a_{j} \ T(\vec{v}_{j}) \in Span \ T(\vec{v}_{i}), ..., T(\vec{v}_{n}) \\ \vdots \quad R(T) \ \subset Span (T(\beta)) \\ \end{array}$$

1

Example:
$$T: P_2(IR) \rightarrow M_{2x2}(IR)$$
 defined by:

$$T(f) = \begin{pmatrix} f(0) & f(1) \\ 0 & f'(0) \end{pmatrix}$$
Take $\beta = \{1, X, X^2\}$ as basis of $P_2(IR)$
We have: $R(T) = \text{Span} \{T(1), T(X), T(X^2)\} = \text{Span}(T(\beta))$

$$= \text{Span} \{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \}$$

$$(in. indep.$$

2

.

-

-

()
$$R(T) = span \{T(\vec{v}_{1}), T(\vec{v}_{2}), T(\vec{v}_{n}), T(\vec{v}_{n})\}$$

$$= span \{T(\vec{v}_{R(1)}), \dots, T(\vec{v}_{n})\} = span(S)$$
(2) Now suppose $\exists b_{R(1)}, b_{R(2)}, \dots, b_{n} \in F \text{ s.t.}$

$$= \sum_{i=R(1)}^{n} b_{i} T(\vec{v}_{i}) = 0.$$
Then, by linearity, we have: $T(\sum_{i=R(1)}^{n} b_{i} \vec{v}_{i}) = 0$

$$\Rightarrow = \sum_{i=R(1)}^{n} b_{i} \vec{v}_{i} \in N(T)$$

12

 $\sum_{i=k+1}^{n} b_i \overline{v}_i = \sum_{i=1}^{k} C_i \overline{v}_i$ for some $C_1, \dots, C_k \in \overline{F}$. $\sum_{i=1}^{k} (-c_i) \vec{v}_i + \sum_{i=k+1}^{n} b_i \vec{v}_i = \vec{0}$ But then: '.' {v, ..., vng is a basis for V and so it is lin. ind. (-Ci) = 0 for i=1,2,..., k bi = 0 for i=k+1, k+2, ..., n S is lin. ind. i S is basis for R(T)

 $= \frac{1}{k} + (n-k)^{-1}$ n = dim(V)Ξ

Thm: Let V and W be vector spaces of equal finite-dimensions Let $T: V \rightarrow W$ be a linear transformation. Then, the following are equivalent: (RIT), (a) T is one-to-one (b) T is onto dim(R(T1)≤ (c) Rank(T) = dim(V) dim(W) Proof: T is one-to-one Nullity (T) = 0 (by previous proposition) ⇒ Rank(T) + Nullity(T) = dim (V) \ominus Rank(T) = dim(W) \ominus R(T) = W dim(R(T)) @ Tis onto

Example: (onsider
$$T = P_2(IR) \rightarrow P_3(IR)$$
 defined by :
 $T(f(x)) := 2f'(x) + \int_0^x 3f(x) dx$
We have $R(T) = span \{T(1), T(x), T(x)\}$
 $= span \{3x, 2+\frac{3}{2}x^2, 4x+x3\}$
 $dim(R(T)) = rank(T) = 3$
 $Linear independent$
 $Rark(T) + Nullity(T) = dim(P_2(IR))$
 $\Rightarrow Nullity(T) = 0 \Rightarrow N(T) = \{0\}$
 $= T$ is one -to-one.

-

Example: Show that
$$\forall q(x) \in P(IR)$$
, $\exists p(x) \in P(IR)$ such that
for all there
exists $(T \text{ is onto})$
 $[(x^2 + 5x + 7) P(X)]'' = q(X)$.
Consider $T: P(IR) \rightarrow P(IR)$ defined by:
 $T(p(x)) = [(x^2 + 5x + 7) P(X)]''$
(Exercise: $T \text{ is linear})$
 $(Need to check N(T) = \frac{2}{5} \frac{1}{5} \text{ or Nullity}(T) = 0)$
because dim $(P(IR)) = \infty$
Idea: Restrict T to $Pn(IR)$: Define, $T: Pn(IR) \rightarrow Pn(IR)$
such that $T(p(X)) = [(x^2 + 5x + 7) P(X)]''$
Remain to show Nullity $(T) = 0$. $(Exercise)$

Let V and W be vector spaces. Let { v, v, v, ..., vn} Thm: be a basis of V. Then, given any W., W2, ..., WneW. ∃ a unique linear transformation T: V→W such that T(vi) = wi for i=1,2,..., n

Proof: For
$$\vec{x} \in V$$
, $\exists ! a_1, a_2, ..., a_n \in F$ s.t. $\vec{x} = \sum_{i=1}^{n} a_i \vec{v}_i$.
We define $T: V \rightarrow W$ by : $T(\vec{x}) = \sum_{i=1}^{n} a_i \vec{w}_i \in W$
• T is linear.: For $\vec{x} = \sum_{i=1}^{n} a_i \vec{v}_i \in V$
and $c \in F$,
We have: $T(c\vec{x} + \vec{y}) = T(\sum_{i=1}^{n} (ca_i + b_i) \vec{v}_i)$
 $= \sum_{i=1}^{n} (ca_i + b_i) \vec{w}_i$
 $= c(\sum_{i=1}^{n} a_i \vec{w}_i) + (\sum_{i=1}^{n} b_i \vec{w}_i)$
 $T(\vec{x})$

• By definition,
$$T(\vec{v}_i) = \vec{\omega}_i$$
 for $i=1,2,...,n$
• T is unique : Suppose $U: V \rightarrow W$ is linear s.t.
 $U(\vec{v}_i) = \vec{\omega}_i$ for $\forall i$.
For any $\vec{x} = \sum_{i=1}^{n} a_i \vec{v}_i \in V$, we have :
 $U(\vec{x}) = \sum_{i=1}^{n} a_i U(\vec{v}_i) = \sum_{i=1}^{n} a_i \vec{\omega}_i = T(\vec{x})$.
 $i = U = T$.