Lecture 5:
Zorn's Lemma
Let S be a partially ordered set. If every chain of S has
an upper bound in S, then S contains a maximal elements.

$$\frac{\text{Definition 1:}}{\text{Partially ordered}} \text{ A partially ordered on a (non-empty) set S}$$
is a binary relation on S, denoted \leq , which satisfies:
• for $\forall s \in S$, $s \in S$
• if $s \leq S'$ and $s' \leq S'$, then $s \leq S''$.

$$\frac{\text{Definition 2:}}{\text{If every elements in a partially ordered set S is comparable}$$
under \leq , then S is called a totally ordered set.

and the second se

<u>Zorn's lemma</u> (adapted to 2048) Let V be a vector space. Let S be the collection of linearly independent Subsets of V. Then S is partially ordered under \subseteq . Assume every chain $[L_{\alpha}]_{\alpha\in I}$ of S has a upper bound.

(Obviously, What is an upper bound of the chain. We need to show that Uhat is linearly independent) Then: S has a maximal element.

Theorem:Every vector space has a basis.Proof:Let C be the collection of all Linearly independentSubsets of V.(We may consider a countable chain
for any chain {SiJiEI (SicSiC... for easier interpretation.)US:is also Linearly independent...US:is also Linearly independent...We claim that span(M) = V.If not,If
$$v \in V$$
Then:Multidistic Linearly independent.ButMc Multidistic Linearly independent.We Multidistic Linearly independent.We claim that span(M) = V.If not,If $v \in V$ Then:Multidistic Linearly independent.ButMc Multidistic Linearly independent.

-

We'll show that
$$Span(B) = Span(S) = V$$

It suffices to show that for any $\vec{v} \in S$, $\vec{v} \in Span(B)$.
If not, suppose $\vec{v} \notin Span(B)$.
Then: $\beta \cup \{\vec{v}\}$ is linearly independent subset of S .
Hence, $\beta \cup \{\vec{v}\} \in C$. But $\beta \cup \{\vec{v}\} \supseteq B$.
(ontradicting to the fact that β is maximal.
 $\vec{v} \in Span(B)$.
 $\vec{v} \in Span(B) = Span(S) = V$.
 $\vec{v} \in Span(B) = Span(S) = V$.

Remark: To find a basis inside a spanning set S, it's natural to find a minimal spanning
Set of V inside S.
If
$$M \in S$$
 is minimal, then M is linearly independent.
If not, we can find $v \in M \ni Span(M \setminus \{v\}) = Span(M)$, contradicting the
minimality of M.
One might consider Zorn's lemma as follows:
Let C be the set of all spanning subarts of S, partially order C by reverse
inclusion. That is: $S_i \in C$ and $S_2 \in C$, $S_i \in S_2$ iff $S_i = S_2$.
For any chain $\{S_i\}_{i \in I}$ in C, $\bigcap_{i \in S_i}$ is the upper bound.
If $\bigcap_{i \in I} S_i \in C$, then Zorn's lemma tells us C has a maximal element (i.e. minimal
spanning set)

A general

ostr

2

.

-

BUT: OS; MAY NOT always in C!!

Linear Transformation
Definition: Let V and W be vector spaces over F.
A linear transformation from V to W is a map
$$T: V \rightarrow W$$

such that: (a) $T(\vec{x}+\vec{y}) = T(\vec{x}) + T(\vec{y})$
(b) $T(a\vec{x}) = aT(\vec{x})$
for all $\vec{x}, \vec{y} \in V$, $a \in F$.

2

.

-

-

Proposition: Let T: V > W be a linear transformation. Then:
(i) T(
$$\vec{v}_v$$
) = \vec{v}_w
(ii) T($\sum_{i=1}^{n} a_i \vec{x}_i$) = $\sum_{i=1}^{n} a_i T(\vec{x}_i)$ $\forall \vec{x}_1, \vec{x}_2, ..., \vec{x}_n \in V$
(T) $T(\vec{v}_v) = T(\vec{v}_v + \vec{v}_v) = T(\vec{v}_v) + T(\vec{v}_v)$
 $\Rightarrow T(\vec{v}_v) = \vec{v}_w$. (Cancellation law)
(ii) Use math. induction (exercise)

Examples: For any vector spaces V and W, we have:
(a) The zero transformation
$$T_0: V \rightarrow W$$
 defined by $T_0(\vec{x}) := \vec{\sigma}_W$
(b) The identity transformation $I_V: V \rightarrow V$ defined by $I_V(\vec{x}) = \vec{x}$
(c) Let $A \in M_{mxn}(F)$ be a mxn matrice F .
Define: $L_A: F^n \rightarrow F^m$ as: $(F^n = space of col vectors of size n)$
 $L_A(\vec{x}) \stackrel{def}{=} A\vec{x}$
 L_A is called the left multiplication by A .
 $T = M_{mxn}(F) \rightarrow M_{nxm}(F)$ defined by $T(A) \stackrel{def}{=} A^{\pm}(franspow of A)$

•
$$T: P_n(IR) \rightarrow P_{n-1}(IR)$$
 defined by $T(f(x)) = f'(x)$
is a lin. transf.
• Let a and $b \in IR$, $a < b$. Then,
 $T: C(IR) \rightarrow IR$ defined by:
 $(space of continuous)$
 $functions$
 $T(f) \stackrel{def}{=} \int_a^b f(t) dt$

•
$$L_A: F^* \rightarrow F^m$$
 ($A \in M \max(F)$)
 $N(L_A) = N(A) = null space of A$
 $R(L_A) = \mathcal{C}(A) = col space of A$ (space of linear
 $combination of col vectors$
• For $T: Pn(IR) \rightarrow Pn_{+}(IR)$ defined by
 $T(f(x)) = f'(x)$, then:
 $N(T) = \{a_0 \in Pn(IR) : a_0 \in IR\}$
 $R(T) = Pn_{+}(IR)$

a given

anter 1

-