Lecture 4:
Recall :
Quotient Space
Definition: Let V be a vector space over F and let W be a subspace
of V. Let veV. Define:
$\vec{v} + \vec{W} = \{\vec{v} + \vec{w} : \vec{w} \in W\}$
V+W is called a coset of W in V.
Remark: NEV+W.
Definition: The set V/W (called V mod W), is the set
defined by V/W = Ev+W = veV3
(collection of cosets of W in V)

1

.....

. .

Proposition: Let
$$\vec{v}, \vec{v} \in V$$
. Then: $\vec{v} + W = \vec{v} + W$ iff $\vec{v} - \vec{v} \in W$.
Proof: (=) Let $\vec{v} + W = \vec{v} + W$.
 $\vec{v} \in \vec{v} + W = \vec{v} + W$. $\vec{v} = \vec{v} + \vec{w}$ for some $\vec{w} \in W$.
(\notin) Suppose $\vec{v} - \vec{v} \in W$.
Let $\vec{w} = \vec{v} - \vec{v}$. Then: $\vec{v} = \vec{v} + w$, for some $\vec{w} \in W$.
 $\vec{v} + W \subset \vec{v} + W$. Similarly, $\vec{v} = \vec{v} + \vec{\omega}$ for Some $\vec{u} \in W$.
Definition: Define:
 $(\vec{v} + W) + (\vec{v} + W) := (\vec{v} + \vec{v}') + W$ (addition)
 $a \cdot (\vec{v} + W) := a\vec{v} + W$ (Scalar multiplication)

-

Proposition: Suppose
$$\vec{v} + W = \vec{v} + W$$
. Then: for any $\vec{v}' + W \in V/W$.
 $(\vec{v} + W) + (\vec{v}'' + W) = (\vec{v} + W) + (\vec{v}'' + W)$
 $a \cdot (\vec{v} + W) = a \cdot (\vec{v} + W)$ for any $a \in F$.
Proof: Homework!
Remark: Addition and scalar multiplication are well-defined.
Theorem: With addition and scalar multiplication defined above,
 V/W is a vector space over F, called the quotient space.
Proof: Homework!

-

Examples of quotient space
• Let
$$W = \overline{10}\overline{3}$$
. V/W is the same as V .
Let $W = V$. V/V is the same on $\overline{10}\overline{3}$.
 $\overline{V} + W = \overline{v}' + W$ iff $\overline{v} - \overline{v}' \in W = \{\overline{0}\}$
iff $\overline{v} - \overline{v}' = \overline{0}$
iff $\overline{v} = \overline{v}'$

Let V = IR². Let W be the y-axis.
 Recall: (x, y) + W = (x', y') + W iff (x, y) - (x', y') \in W iff x-x' = 0
 i. a vector in V/W is determined by the x-coordinate.

Proposition: Suppose V is finite - dimensional. Then:

$$dim(V/W) = dim(V) - dim(W).$$
Proof: Let $\{\overline{W}_1, ..., \overline{W}_n\}$ be a basis of W.
Extend it to a basis $\{\overline{W}_1, ..., \overline{W}_n, \overline{V}_{1,...}, \overline{V}_k\}$ of V.
Then: $dim(W) = n$, $dim(V) = ntk$
We'll prove that $\{\overline{V}_1 + W, ..., \overline{V}_k + W\}$ forms a basis of YW.
If so, we'll have: $dim(V/W) = k = (ntk) - n$
 $dim(V)$ $dim(W)$
Linear independence:
Suppose: $a_1(\overline{V}_1 + W) + ... + a_k(\overline{V}_k + W) = \overline{0} + W$
 $\Rightarrow (a_1\overline{V}_1 + ... + a_k\overline{V}_k) + W = \overline{0} + W$

$$i \quad a_{1}\vec{v}_{1}+...+a_{k}\vec{v}_{k} \in W$$

$$\Rightarrow a_{1}\vec{v}_{1}+...+a_{k}\vec{v}_{k} = b_{1}\vec{w}_{1}+...+b_{n}\vec{w}_{n} \text{ for some } b_{1,...,}b_{n}\in F.$$

$$\Rightarrow a_{1}\vec{v}_{1}+...+a_{k}\vec{v}_{k} = b_{1}\vec{w}_{1} - ... - b_{n}\vec{w}_{n} = \vec{v}$$
As $\{\vec{v}_{1},...,\vec{v}_{k},\vec{w}_{1},...,\vec{w}_{n}\}$ is linearly independent,
 $a_{1}=...=a_{k}=o \text{ and } b_{1}=...=b_{n}=o.$

$$i \quad \{\vec{v}_{1}+W, \ldots, \vec{v}_{k}+W\} \text{ is linear independent.}$$
Span: Let $\vec{v} + W \in V/W.$
Then: $\vec{v} = a_{1}\vec{w}_{1}+...+a_{n}\vec{w}_{n} + b_{1}\vec{v}_{1}+...+b_{k}\vec{v}_{k} \text{ for some } a_{i}\text{ 's and } b_{j}\text{ 's.}$

$$\Rightarrow \vec{v} + W = \{b_{1}\vec{v}_{1}+...+b_{k}\vec{v}_{k}+a_{1}\vec{w}_{1}+...+a_{n}\vec{w}_{n}\} + W$$

$$= b_{1}(\vec{v}_{1}+W) + ...+b_{k}(\vec{v}_{k}+W)$$

.

Existence of basis
For a finite-dimensional vector space, the basis can be
constructed as follows:

$$\{\vec{v}_i\}$$
 4- Linear independent
 $\{\vec{v}_i, \vec{v}_2\}$ 4- Attach one more vector $\vec{v}_2 \neq \{\vec{v}_i, \vec{v}_2\}$ is
 $\{\vec{v}_i, \vec{v}_2\}$ 4- Attach one more vector $\vec{v}_2 \neq \{\vec{v}_i, \vec{v}_2\}$ is
 $\lim_{i \to \infty} \int_{i}^{i} \int_{i}$

Example: Consider F[∞] = E(a₁, a₂,...): a_j ∈ F}.
Let S_i = {e₁, e₂, ..., e_i}
(1,0,...0) (0,1, a,...)
Then: S₁ ⊂ S₂ ⊂ ... ⊂ S_i ⊂ ...
Let S = US_i, which is linearly independent.
Obviously span(S) ≠ F[∞].
So, we can find
$$\vec{v} \notin span(S) \ni S \cup \{\vec{v}\}$$
 is linearly independent.
We can repeat the process.
Question: will the process stop??

-