Lecture 23:

1

Claim 3:
$$V = K_{\lambda_1} + K_{\lambda_2} + ... + K_{\lambda_k}$$

Pf: By M.1. on $k = #$ of distinct eigenvalues.
When $k=1$, let $m = multiplicity of \lambda_1$. Then, char poly of 7
By Caley-Hamilton Thm, $g(T) = (\lambda_1 I - T)^m = O = (\lambda_1 - t)^m$.
 $i = K_{\lambda_1} = N((T - \lambda_1 Z)^m) = V$
 \therefore Thm is true for $k=1$.
Assume that the thin is true for any lin. op. w/ fewer
than k distinct eigenvalues.
Consider $T = V = V$ with k distinct eigenvalues.
 $\lambda_1, \lambda_2, \dots, \lambda_k$

2

12

Gane

Claim 4: Let
$$W = R((T - \lambda \kappa I)^{m} \int multiplicity of \lambda \kappa$$

Then: () $T|_{W} : W \to W$ is well-defined. (evenue)
(2) $T|_{W}$ has $R-1$ distinct eigenvalues : $\lambda_{1}, \lambda_{2}, ..., \lambda_{K-1}$
(3) $(T - \lambda \kappa I)^{M}|_{K_{\lambda_{1}}} : K_{\lambda_{1}} \to K_{\lambda_{1}}$ is onto (i
Let $\tilde{x} \in V$. Then: $(T - \lambda \kappa I)^{M} \tilde{x} \in W$
By induction by pothess, $\exists \tilde{w}_{i} \in K_{\lambda_{1}} = generalized$ eigenspace of \exists_{i}
such that $(T - \lambda \kappa I)^{M} \tilde{x} = \tilde{w}_{1} + \tilde{w}_{2} + ... + \tilde{w}_{K_{1}}$
Easy to check : $K_{\lambda_{1}} \leq K_{\lambda_{1}}$ for $i < R$

-

$$(T - \lambda_{k} I)^{m} \Big|_{K_{A_{i}}} : K_{\lambda_{i}} \rightarrow K_{A_{i}} \text{ is onto, then:}$$

for each $\vec{w}_{i} \in K_{\lambda_{i}}, \exists \vec{v}_{i} \in K_{\lambda_{i}} \ni (T - \lambda_{k} I)^{m} (\vec{v}_{i}) = \vec{w}_{i}$
$$(T - \lambda_{k} I)^{m} (\vec{x}) = (T - \lambda_{k} I)^{m} (\vec{v}_{i}) + \dots + (T - \lambda_{k} I)^{m} (\vec{v}_{k-i})$$

$$(T - \lambda_{k} I)^{m} (\vec{x} - \vec{v}_{i} - \vec{v}_{2} - \dots - \vec{v}_{k-i}) = \vec{o} .$$

$$\vec{v}_{k}$$

$$\vec{x} - \vec{v}_{i} - \vec{v}_{2} - \dots - \vec{v}_{k-i} \in N((T - \lambda_{k} I)^{m}) = K_{\lambda_{k}}$$

$$\vec{x} = \vec{v}_{i} + \dots + \vec{v}_{k-i} + \vec{v}_{k}$$

$$\vec{k}_{A_{i}} \qquad \vec{k}_{A_{k-i}} \qquad \vec{k}_{A_{k}}$$

$$i \quad V = K_{A_{i}} + \dots + K_{\lambda_{k}}$$

By M.1, the them is true.

$$\frac{\Pr \circ f \quad of \quad Claim \quad 4}{\operatorname{Note:} \quad (T - \Re \times 1) |_{K_{A_{i}}} \quad is \quad (-1) \quad and \quad onto \quad (if \quad i < k)}$$

$$\Rightarrow \quad (T - \Re \times 1) |_{K_{A_{i}}} \quad is \quad also \quad onto$$

$$Also \quad , \quad E_{\lambda_{i}} \leq K_{\lambda_{i}} \leq W = R((T - \Re \times 1)^{m})$$

$$\therefore \quad \Lambda_{i} \quad is \quad an \quad eigenvalue \quad of \quad T|_{W}$$

$$fw \quad i < k.$$

$$W = R(T - \Re \times 1)$$

· AI, Az, ..., AKH are eigenvalues of Tlw.

States and Al

Next, suppose it is an eigenvalue of The. Suppose $T|_{W}(\vec{v}) = \lambda_{k}\vec{v}$ for $\vec{v} \neq \vec{v}$ and $\vec{v} \in \mathcal{W} = R((T - \lambda_{k}I)^{m})$ Write $\overline{v} = (T - \lambda_k \mathbf{I})^m (\overline{y})$ $\dot{O} = (T - \lambda_k I) \dot{V} = (T - \lambda_k I) (f - \lambda_k I)^{m} (\dot{g})$ $= (T - \lambda_{E} I)^{m+i}(\bar{y})$ =) $y \in K_{\lambda k} = N((T - \lambda_k I)^m)$ $(I - \lambda_k I)^m (y) = 0$ (ontradiction,

Claim S: Let B: = ordered basis of Kai. Then: B=BIUBZU-- UBK is a disjoint union and a basis of V. <u>Pf</u>: <u>Disjoint union</u>: Let X ∈ BinB; (i=j) ≤ Kain Kaj. $(T-\lambda; L)(\vec{x}) \neq \vec{\sigma}$ $(T-\lambda; L|_{k_{\lambda_j}} is 1-1)$ $(T - \lambda; L)^{2} (\chi) \neq \vec{o}$ (T- A; I) (x) ≠o for Vp. X & Ka; ((ontradiction) Bin Bj = \$

Basis: Let
$$\overline{x} \in V$$
. By claim 3,
 $\overline{x} = \overline{v}_1 + \overline{v}_2 + ... + \overline{v}_k$ where $\overline{v}_i \in K_{R_i}$
 \overline{z} is a lin. comb. of vectors in $\beta = \beta \cdot v \beta_2 \cdots v \beta_k$
 $\therefore V = Span(\beta)$
Let $g = |\beta|$. Then: $\dim(V) \leq g$
Let $di = \dim(K_{R_i})$. Then: $g = \sum_i d_i \leq \sum_i m_i = \dim(V)$
 $\therefore g = \dim(V) \implies \beta$ is a basis.

-

Claim 6: dim (KAi) = Mi 1,0 $\sum_{i} d_{i} = \sum_{i} m_{i} \Rightarrow \sum_{i} (m_{i} - d_{i}) = 0$ $i = d_{i} \quad \text{for } i$ $d_{im}(V) \Rightarrow m_{i} = d_{i} \quad \text{for } i$ Pf: ⇒ mi=di for Vi.

V= KA, EKALE ... EKAR

Let $\delta_1 = \{ (-\lambda I)^m \vec{v}_1, \dots, \vec{v}, \}$ Claim 7: $y_q = \{(T - \lambda I)^{m_q} \widetilde{v}_q, \ldots, \widetilde{v}_q\}$ If initial vectors are linearly independent, then : 8 = 8,0820-08g is disjoint union and it's linearly independent. Pf: Disjoint union : Easy, obvious. (exercise) Linear independence; Use M.I. on n= # of element in 8. When N=1, frivial Ass no the thm is true for I having less than n elements

When
$$|\vartheta| = n$$
, let
 $\vartheta'_{1} = \{(T - \lambda I)^{M_{1}} \vec{\upsilon}_{1}, \dots, (T - \lambda I) \vec{\upsilon}_{1}\}$
 $\vartheta'_{2} = \{(T - \lambda I)^{M_{1}} \vec{\upsilon}_{2}, \dots, (T - \lambda I) \vec{\upsilon}_{2}\}$
Let $\vartheta' = \vartheta'_{1} \upsilon \vartheta'_{2} \upsilon \ldots \upsilon \vartheta'_{2} \ldots \vartheta \vartheta'_{1} = n - g$
Let $W = \operatorname{span}(\vartheta)$. Let $U = (T - \lambda I) |_{W} : W \rightarrow W$
Then: $R(U) = \operatorname{span}(\vartheta')$ (Check)
 \therefore initial vectors of ϑ'_{1} are L.I.
 $\vdots \vartheta'$ is L.I. (by induction hypothese)
 \therefore dim $(R(U)) = |\vartheta'| = n - g$

-

Also,
$$S = \{(T - \lambda I)^{m_1} \overline{v}_1, \dots, (T - \lambda I)^{m_q} (\overline{v}_q)\} \subseteq N(U)$$

 $(T - \lambda I)|_W$
 $(T - \lambda I)|_W$

-

Claim 8: Suppose $\beta = basis of V = disjoint union of cycles.$ Then: ① For each cycle & in β , W = span() is T-invariant and $[T]_W]_X = Jordan block.$ ② $\beta = JC$ basis for V,

Claim 9: Let
$$\lambda = eigenvalue \cdot f T$$
.
Then: K_{λ} has a basis $\beta = union \circ f$ disjoint cycles w.r.t.
Pf: By M.1. on $n = dim(K_{\lambda})$.
When $n=1$, trivial.
Suppose the result is true for $dim(K_{\lambda}) < n$.
When $dim(K_{\lambda}) = n$. Let $U = (T - \lambda I)|_{K_{\lambda}} : K_{\lambda} \rightarrow K_{\lambda}$
Then: $dim(R(u)) < dim(K_{\lambda}) = n$
('.' $dim(R(u)) < dim(K_{\lambda}) = n$
('.' $dim(K_{\lambda}) = dim(N(u)) + dim(R(u))$)
Ex $dim(E_{\lambda}) \ge 1$
Let $K_{\lambda}' = generalized eigenspan corresponding to λ of $T|_{R(u)}$
Easy to check that $R(u) = K_{\lambda}'$ (Check) $K_{\lambda}' \le R(u)$$

By induction hypothesis,
$$\exists$$
 disjoint cycles $\aleph_1, \aleph_2, ..., \aleph_8$ of $T(\mathsf{R(u)}) \Rightarrow \aleph = \bigvee_{i=1}^{3} \aleph_i$ is a basis for $\mathsf{R}(\mathsf{U}) = \mathsf{K}_A'$
Let $\aleph_i = \left\{ (T|_{\mathsf{R(u)}} - \aleph T)^{\mathsf{m}_i} \vec{x}_i, ..., \vec{x}_i \right\}_{\mathsf{K}_A'} = \mathsf{R}(\mathsf{U})$
Let $\vec{x}_i = \mathcal{U}\vec{v}_i = \bigcup_{i=1}^{3} (T - \aleph T)\vec{v}_i$, $\vec{v}_i \in \mathsf{K}_A$
Define: $\aleph_i = \underbrace{?}(T - \aleph T)^{\mathsf{m}_i+\mathsf{l}_i} (\vec{v}_i), ..., (T - \aleph T)(\vec{v}_i), \vec{v}_i \right]$
Note: $\bigcup_{i=1}^{3} \aleph_i$ is L.I. $i \in \mathsf{S} = \underbrace{?}\mathsf{W}_1, \mathsf{W}_2, ..., \mathsf{W}_8$ is L.I. subset of E_8 .
Extend S to a basis of $\mathsf{E}_8 : \underbrace{?}\mathsf{W}_1, \check{\mathsf{W}}_2, ..., \check{\mathsf{W}}_8, \check{\mathsf{U}}_1, \check{\mathsf{W}}_2, ..., \check{\mathsf{M}}_8$
By construction, $\aleph_1, \aleph_2, ..., \aleph_8, \underbrace{?}\mathsf{W}_1, \underbrace{?}\mathsf{W}_2, ..., \underbrace{?}\mathsf{W}_8$ are disjoint units
of cycles \ni initial vectors are L.L.

-

