Lecture 2 [heorem: Let V be a vector space. Let GCV be a spanning set for V consisting of n vectors. and LCV be a linearly independent subset consisting of m vectors. Then, MEN and EHCG consisting of exactly n-m vectors Such that LUH spans V. (Replacement thm)

$$\frac{\text{Dimension}}{\text{Cor I: Let } V \text{ be a vector space having a finite basis.}}$$

$$\frac{\text{Then}, \text{ every basis of } V \text{ contains the same number}$$

$$\frac{\text{of vectors.}}{\text{of vectors.}}$$

$$\frac{\text{Pf: Let } \beta \text{ and } \vartheta \text{ be two bases of } V.$$

$$\frac{\text{Since } \beta \text{ spans } V \text{ and } \vartheta \text{ is lin. independent,}}{\text{then } |\vartheta| \leq |\beta| \text{ (by replacement Thm)}}$$

$$\frac{\text{Similarly, } |\beta| \leq |\vartheta|$$

$$\Rightarrow |\vartheta| = |\beta|.$$

onto

-

--

-

Direct Sum: Let U and W be subspaces of V.
Then:
$$U+W = \{\vec{x}+\vec{y}: \vec{x}\in U \text{ and } \vec{y}\in W\}$$
 is also a
subspace of V (Check!)
Definition: V is said to be the direct sum of U and W,
denoted by $V = U \oplus W$ if $V = U+W$ and $U \cap V = \{\vec{z}\vec{o}\}$.
Lemma: $V = U \oplus W$ iff for $\forall \vec{v} \in V$, $\exists !$ vectors $\vec{u} \in U$ and
 $\vec{w} \in W \Rightarrow \vec{v} = \vec{u} + \vec{w}$
Proof: (=>) If $\vec{v} \in V$, then $\vec{v} = \vec{u} + \vec{w}$ for some $\vec{u} \in U$ and
 $('.' V = U \oplus W)$
For uniqueness, let $\vec{v} = \vec{u} + \vec{w}_1 = \vec{u}_2 + \vec{w}_2$.
Then: $\vec{u}_1 - \vec{u}_2 = \vec{w}_2 - \vec{w}_1 \in U \cap W = \{\vec{o}\}$.

(4)
$$V = U + W$$
 is obvious.
Now, let $\vec{z} \in U \cap W$. $\vec{z} \mid \vec{u} \text{ and } \vec{w} \neq \vec{z} = \vec{u} + \vec{w}$.
Then: $\vec{z} = \vec{z} + \vec{o} = \vec{o} + \vec{z} \Rightarrow \vec{u} = \vec{o} \text{ and } \vec{w} = \vec{o}$
 $\vec{u} \quad \vec{w} \quad \vec{u} \quad \vec{w} \Rightarrow \vec{z} = \vec{o}$.
i. $U \cap W = \{\vec{o}\}$

.

-

1

Definition V is said to be a direct sum of subspaces

$$U_1, U_2, ..., U_k$$
, denoted as $V = U_1 \oplus U_2 \oplus ... \oplus U_k$, if for
 $\forall \vec{v} \in V$, $\exists !$ vectors $\vec{u}_i \in U_i$ ($1 \le i \le k$) $\exists \vec{v} = \vec{u}_1 + \vec{u}_2 + ... + \vec{u}_k$.
Remark: $U_1 \oplus ... \oplus U_k = (...((U_1 \oplus U_2) \oplus U_3) \oplus ... \oplus U_k)$
 $\cdot V = U_1 \oplus U_2 \oplus ... \oplus U_k$ iff :
 $\bigcirc V = U_1 + U_2 + ... + U_k$
 $\textcircled{2}$ $U_r \land \sum_{i \ne r} U_i = \underbrace{\fbox{0}}^{\circ} f_0 r$ $1 \le r \le k$.

-

Dimension of direct sum
Theorem: Let V be a finite - dim vector space .
$$U_1, U_2, ..., U_m$$

are subspaces of V. Then:
 $\dim(U_1 \oplus U_2 \oplus ... \oplus U_m) = \sum_{i=1}^m \dim(\mathcal{U}_i)$

-