Lecture 12: Recall:
Eigenvalue & Eigenvectors
Def: A linear operator
$$T: V \rightarrow V$$
 (where V is finite-dim) is
called diagonalizable if \exists an ordered basis β for V such
that $[T]_{\beta}$ is a diagonal matrix,
A square matrix A is called diagonalizable if LA is so.
Def: Let T be a linear operator on a vector space V/F.
A non-zero vector $\vec{v} \in V$ is called an eigenvector of T
if $\exists \lambda \in F$ s.t. $T(\vec{v}) = \lambda \vec{v}$. In this case, $\lambda \in F$
is called an eigenvalue corresponding to the eigenvector \vec{v} .

-

Prop: A linear operator
$$T: V \rightarrow V$$
 (V = fin-dim) is diagonalizable
iff 3 an ordered basis β for V consisting of eigenvectors
of T.
In such case, if $\beta = \hat{z} \overline{v}_1, \overline{v}_2, ..., \overline{v}_n \hat{y}$, then:
 $[T]_{\beta} = \begin{pmatrix} \lambda_1 & \lambda_2 & 0 \\ 0 & \lambda_n \end{pmatrix}$
Where λ_3 is the eigenvalue of T corresponding to \overline{v}_j

Prop = iff $det(A - \lambda I_n) = 0$. a linear operator on an n-dim vector space Def: Let T be V. Choose an ordered basis & for V. Then, the characteristic polynomial of T is defined as the characteristic polynomial of [T]B. (i.e. f_T(t) det det ([T]_p - t In) & Pn(F))

0.04

Prop: Let T be a linear operator on a vector space V, and (ef A1, 2, ..., 2k be distinct eigenvalues of T, If Vi, V2, ..., Vk are eigenvectors of T corresponding to AI, Az,..., AK respectively, then ? Tr, ..., Nh3 are linearly independent. Proof: We prove by induction on k. For k=1, V, ≠0 ⇒ {V,} is lin. independent, Suppose the statement holds for k=1 distinct eigenvalues. Let N, N2, ..., Nk, Nk+1 be eigenvectors corresponding to kt1 distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_k, \lambda_{k+1}$ of T.

If
$$a_1 \overline{v}_1 + a_2 \overline{v}_2 + ... + a_k \overline{v}_k + a_{k+1} \overline{v}_{k+1} = \overline{o}$$
 for $a_i \in F$,
then applying $T - \lambda_{k+1} Iv$ to both sides $\frac{N(T - \lambda_{k+1} Iv) \setminus \{\overline{o}\}}{g_i ves_i}$:
 $a_1(\lambda_1 - \lambda_{k+1}) \overline{v}_1 + ... + a_k(\lambda_k - \lambda_{k+1}) \overline{v}_k = \overline{o}$
By induction hypothesis,
 $a_1(\lambda_1 - \lambda_{k+1}) = ... = a_k(\lambda_k - \lambda_{k+1}) = 0$
 $\Rightarrow a_1 = a_2 = ... = a_k = 0$
 $\Rightarrow a_{k+1} \overline{v}_{k+1} = \overline{o}$
 $\Rightarrow a_{k+1} \overline{v}_{k+1} = \overline{o}$
 $\Rightarrow a_{k+1} = 0$
 $\therefore \{\overline{v}_1, ..., \overline{v}_{k+1}\}$ is Lin, indep.

Corollary: A linear operator T on an n-dim vector space V
Which has n distinct eigenvalues is diagonalizable.
Proof: Let
$$\vec{v}_1, ..., \vec{v}_n \in V$$
 be the eigenvectors corresponding
to n distinct eigenvalues. Then, the prop. says $\{\vec{v}_1, ..., \vec{v}_n\}$
is lin. independent. $\vec{c}_1 \in \vec{v}_1, ..., \vec{v}_n$ forms a basis. of eigenvectors.
 \vec{c}_1 T is diagonalizable.

Def: Let 2 be an eigenvalue of a linear operator or matrix with characteristic polynomial f(t). The algebraic multiplicity of 2, denoted $\mu_{T}(\lambda)$ or $\mu_{A}(\lambda)$ is the multiplicity of λ as a Zero of f(t), i.e. the largest positive integer k s.t. $(t-\lambda)^k [f(t)]$.

-

Prop: Let T be a linear operator on a finite-dim vector
space V and let
$$\lambda$$
 be an eigenvalue of T with algebraic
multiplicity $\mathcal{M}_{T}(\lambda)$. Then:
 $1 \leq \dim(E_{\lambda}) \leq \mathcal{M}_{T}(\lambda)$
We call $\vartheta_{T}(\lambda) \stackrel{\text{def}}{=} \dim(E_{\lambda})$ the geometric multiplicity of λ .
Proof: Choose an ordered basis $\{\overline{v}_{1}, \overline{v}_{2}, ..., \overline{v}_{p}\}$ for E_{λ} and
extend it to an ordered basis $\{\overline{v}_{1}, \overline{v}_{2}, ..., \overline{v}_{p}\}$ for V .
Then: $[T]_{\beta} = \left(\prod_{i=1}^{N_{1}} \sum_{j=1}^{N_{1}} \prod_{i=1}^{N_{1}} \sum_{j=1}^{N_{1}} \sum_{j=$

-

12

Lemma: Let T be a linear operator, and let $\lambda_1, \lambda_2, ..., \lambda_k$ distinct eigenvalues of T. For each i=1,2,..., k, let vie Ezi. If $\overline{v}_i + \overline{v}_2 + \dots + \overline{v}_k = \overline{o}$, then $\overline{v}_i = \overline{o}$ for all i. Proof: If not, say v,..., vs =0 Ezz ENI then: りして ひっちひょた。 せい で で v.k · 17/2 It contradicts to our previous proposition that Vi, ..., Vs must be lin. independent.

Then: Aij = 0 for all i and j (for Si are lin. independent for all i. i Siu Szu ... u Sk is linearly independent.

Theorem: Let T be a linear operator on a finite dimensional
vector space V such that the characteristic polynomial splits.
Let λ₁, λ₂, ..., λ_k be distinct eigenvalues of T.
Then: (a) T is diagonalizable iff:
$$\mathcal{U}_{T}(\lambda_{i}) = \mathcal{Y}_{T}(\lambda_{i})$$

for $i=1,2,...,k$
(b) If T is diagonalizable and Bi is an ordered basis
for $E_{\lambda_{i}}$ for each i, then = $\beta_{i} = \beta_{i} \cup \beta_{2} \cup ... \cup \beta_{k}$ is
an ordered basis for V consisting of eigenvectors.
(so that $[T]_{\beta}$ is a diagonal matrix)

-

Proof: Write
$$n = \dim(V)$$
, and $m_i = M_T(\lambda_i)$ and $d_i = \Im_T(\lambda_i)$
for all i. dim (E_{λ_i})
Suppose T is diagonalizable and β is a basis for V consisting
of eigenvectors of T.
(e.g. $\beta = \{v_1, v_2, v_3, v_4, v_5, \dots, v_n\}$)
For each i, let $\beta_i = \beta \cap E_{\lambda_i}$ and $n_i = \#\beta_i$
Then: $n_i \le d_i = \dim(E_{\lambda_i})$ (": β_i is lin. independent)
Also, $d_i \le m_i$
So, we have $n_i \le d_i \le m_i$ for all i.

 $n = \sum_{i=1}^{k} n_i \leq \sum_{i=1}^{k} d_i \leq \sum_{i=1}^{k} m_i = n = dim(v)$ $\sum_{i=1}^{k} d_{i} - \sum_{i=1}^{k} n_{i} = 0 \iff \sum_{i=1}^{k} (d_{i} - n_{i}) = 0$ 2 di=ni for all i. \Rightarrow $\sum_{i=1}^{k} m_i - \sum_{i=1}^{k} d_i = 0 \iff \sum_{i=1}^{k} (m_i - d_i) = 0$ dim(Exi) \Rightarrow di = mi for all i. ini = di = mi for all i (So, Bi is a basis of Eai)