Lecture 11:

1

Recall:
Dual Space Let V be a vector space over F.
•
$$V^* = \mathcal{L}(V, F)$$
.
• Let $\beta = \{\overline{v}_1, \overline{v}_2, ..., \overline{v}_n\}$ be a basis for V.
Then: $\beta^* = \{f_1, f_2, ..., f_n\}$ is a basis for V* where
 $f_1(\overline{v}_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$
• dim (V) = dim (V*)
• $l: V \rightarrow V^{**}$ defined by $l(\overline{v}) l(f) = f(\overline{v})$ where $\overline{v} \in V$ and $f \in V^*$
is an isomorphism.

2

1

Definition: Let T: V > W be linear. The dual map (or transpose
of T is the map
$$T^*: W^* \rightarrow V^*$$
 defined by:
 $T^*(g) = g(T)$ for all $g \in W^*$.
Proposition: Suppose V is fin-dimensional. Let $\{\overline{v}_1, \overline{v}_2, ..., \overline{v}_N\}$
be a basis of V. Let $\beta^* \{f_1, ..., f_N\}$ be the dual basis of β .
Let T: V > W and Y be the basis of W. Denote the dual
basis of Y by Y^* . Then: (1) T^* is linear V T W
(2) $[T^*]_{X^*}^{\beta^*} = ([T]_{\beta}^{Y})^T$ $\beta = Y$
Transpose of T Matrix transpose

Proof: For any
$$g \in W^*$$
, $T^*(g) = g \cdot T$ is linear.
 $T^*(g)$ is a linear functional on V . $T^*(g) \in V^*$.
Thus: T^* maps W^* to V^* .
 T^* is linear: $T^*(\chi g_1 + g_2) = (\chi g_1 + g_2) \cdot T$
 $= \chi g_1 \cdot T + g_2 \cdot T = \chi T^*(g_1) + T^*(g_2)$
Now, write $\beta = \{ \overline{v}_1, \overline{v}_2, ..., \overline{v}_n \}$
 $\chi = \{ \overline{w}_1, \overline{w}_2, ..., \overline{w}_n \}$
 $\beta^* = \{ f_1, f_2, ..., f_n \}$
 $\chi^* = \{ g_1, g_2, ..., g_n \}$

Let
$$A = [T]_{\beta}^{\gamma} = (A;j)$$

To find the *j*th col of $[T^*]_{\gamma^*}^{\beta^*}$, we write :
 $T^*(g_j)$ as a lin. combination of $f_1, f_2, ..., f_n$.
Now, $T^*(g_j) = g_j \cdot T = \sum_{i=1}^{\infty} (g_j \cdot T)(\vec{v}_i) f_i$
i. the *i*th-row, *j*th col entry of $[T^*]_{\gamma^*}^{\beta^*}$ is given by:
 $g_j \cdot T(\vec{v}_i) = g_j (\sum_{k=1}^{M} A_{ki} \vec{w}_k)$
 $= \sum_{k=1}^{M} A_{ki} g_j (\vec{w}_k) = A_j i$
i. $[T^*]_{\gamma^*}^{\beta^*} = A^T = [T]_{\beta}^{\beta}$.

Channel.

Eigenvalue & Eigenvectors
Def: A linear operator
$$T: V \rightarrow V$$
 (where V vs finite-dim) is
called diagonalizable if \exists an ordered basis β for V such
that $[T]_{\beta}$ is a diagonal matrix,
A square matrix A is called diagonalizable if LA is so.
Observation: Say $\beta = \underbrace{\underbrace{1}_{v_1}, \underbrace{v_2, \dots, v_n}_{v_n}$.
If $D = [T]_{\beta}$ is diagonal, then $\forall \overrightarrow{v_j} \in \beta$, we have:
 $(D_{ij}) \quad T(\overrightarrow{v_j}) = \underbrace{\sum_{i=1}^{n} D_{ij} \quad \overrightarrow{v_i} = D_{jj} \quad \overrightarrow{v_j} = A_j \quad \overrightarrow{v_j}$
Conversely, if $T(\overrightarrow{v_j}) = A_j \quad \overrightarrow{v_j} \quad f_r$ some $\lambda_1, \lambda_{2r-r}, \lambda_n \in F_r$.
then: $[T]_{\beta} = (f_1(\overrightarrow{v_i})_{\beta} - -) = (\underbrace{\sum_{i=1}^{n} a_i \quad a_i}_{v_i} = a_i \quad a_i \quad$

Def: Let T be a linear operator on a vector space V/F.
A non-zero vector
$$\vec{v} \in V$$
 is called an eigenvector of T
if $\exists \lambda \in F$ s.t. $T(\vec{v}) = \lambda \vec{v}$. In this case, $\lambda \in F$
is called an eigenvalue corresponding to the eigenvector \vec{v} .
For a square matrix $A \in MnxnLF$, a non-zero vector $\vec{v} \in F^n$
is called an eigenvector of A if \vec{i} is an eigenvector of L_A .
That is: $A\vec{v} = \lambda \vec{v}$ for some $\lambda \in F$.
 λ is called the eigenvalue corresponding to the
eigenvector \vec{v} .

.

Prop: A linear operator
$$T: V \rightarrow V$$
 (V = fin-dim) is diagonalizable
iff 3 an ordered basis β for V consisting of eigenvectors
of T.
In such case, if $\beta = \hat{z} \overline{v}_1, \overline{v}_2, ..., \overline{v}_n \hat{y}$, then:
 $[T]_{\beta} = \begin{pmatrix} \lambda_1 & \lambda_2 & O \\ O & \lambda_n \end{pmatrix}$
Where λ_3 is the eigenvalue of T corresponding to \overline{v}_j

Example:
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
, $\beta = \underbrace{\{ 1 \ 1 \ 1 \ 2 \end{pmatrix}}_{1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{1}$
Check that they are All
eigenvectors and β is basis.

Let $T: IR^{2} \rightarrow IR^{2}$ be rotation by \underbrace{I}_{2} in counter-clockwise
direction.
(Check: $T = LA$ where $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$)
Then: $T(\overline{v})$ is always perpendicular to \overline{v} .

i. For $\forall \overline{v} \neq \overline{v}$, it cannot be an eigenvector because
 $T(\overline{v}) \neq A\overline{v}$ for some $\lambda \in F$

-

075

_

-

Example: Consider T:
$$C^{\infty}(IR) \rightarrow C^{\infty}(IR)$$
 defined by:
Space of smooth function
are infinitely differentiable
 $T(f) = f'$
Then an eigenvector of T with eigenvalue λ is a non-zero
Solution of = $\frac{df}{dt} = \lambda f(t)$
 $(\Rightarrow) f(t) = C e^{\lambda t}$ for some constant C.
 \therefore all $\lambda \in IR$ is an eigenvalue of T.

Def: The characteristic polynomial of
$$A \in Mnxn(F)$$
. is
defined as the polynomial $f_A(t) \stackrel{def}{=} det(A - t In) \in Pn(F)$
Def: Let T be a linear operator on an n-dim vector space
V. Choose an ordered basis β for V. Then, the
characteristic polynomial of T is defined as the
characteristic polynomial of $[T]_{\beta}$.
(i.e. $f_T(t) \stackrel{def}{=} det([T]_{\beta} - t In) \in Pn(F))$

is well-defined, i.e. independent of the choice f - (+) Prop: of B. B' is another ordered basis for V, then: If Pf: $[T]_{\beta'} = Q^{-1}[T]_{\beta}Q \quad (Q = [I_{\nu}]_{\beta'}^{\beta})$ = det (Q⁻¹[T], Q - t In) Then: det (ET]p, -tIn) = det (Q'([T]p - tIn)Q) = det (12^{-1}) det $([T]_p - t]_n)$ det(Q)det(Q) $= f_{\tau}(t)$

-

Remark :

- Let T be a linear operator on a vector space V and let λ be an eigenvalue of T. Then, $\vec{v} \in V$ is an eigenvector of T corresponding to λ iff: $\vec{v} \in N(T - \lambda I v) \setminus \frac{2}{5} \delta^{2}$
- · Next time: We'll discuss <u>eigenspace</u> of T corresponding to 2:

$$E_{\lambda}: \stackrel{\text{def}}{=} N(T - \lambda I_{\nu}) = \{ \vec{x} \in V : T(\vec{x}) = \lambda \vec{x} \} \subset V$$