Proof:
$$\cdot$$
 {f₁, f₂, ..., f_n} is linearly independent.
Suppose: $a_1f_1 + a_2f_2 + ... + a_nf_n = 0 \leftrightarrow zero functional$
For each \vec{v}_i ,
 $(a_1f_1 + ... + a_nf_n)(\vec{v}_i) = 0 \Rightarrow a_1f_1(\vec{v}_i) + ... + a_nf_n(\vec{v}_i) = 0$
 $\Rightarrow a_i = 0$.
 \therefore {f₁, f₂, ..., f_n} is linearly independent.
 \cdot Span ({f₁, f₂, ..., f_n}) = V^{*}.
Let $f \in V^*$. Suppose $f(\vec{v}_i) = b_i$.
Chaim: $b_if_1 + b_2f_2 + ... + b_nf_n = f_i$.
Check: For each \vec{v}_i ,
 $(b_1f_1 + ... + b_nf_n)(\vec{v}_i) = b_if_i(\vec{v}_i) = f(\vec{v}_i) \Rightarrow b_if_i + ... + b_nf_n = f.$

Example: Let
$$\beta = \{1+x, 1-x, x^2\}$$
 be the ordered basis for $P_2(IR)$
Let β^x be the dual basis of β .
If, f_2, f_3]
Then: $1 = f_1(1+x) = f_1(1) + f_1(x)$
 $0 = f_1(1-x) = f_1(1) - f_1(x)$
 $0 = f_1(x^2)$
Solving: we get $f_1(1) = \frac{1}{2}$, $f_1(x) = \frac{1}{2}$, $f_1(x^2) = 0$
Thue, $f_1(a + bx + cx^2) = af_1(1) + bf_1(x) + cf_1(x^2)$
 $= \frac{1}{2}a + \frac{1}{2}b$
f_2 and f_3 can be computed similarly.

and a

-

Remark:
$$\operatorname{dim}(V) = \operatorname{dim}(V^*)$$
 \therefore V is isomorphic to V^*
fin-dim
 $V^{**} = (V^*)^* = \operatorname{duad}$ of the dual space
Proposition: Suppose V is fin-dim. The map $L: V \to V^{**}$
defined by $l(\vec{v})(f) \stackrel{\text{def}}{=} f(\vec{v})$ is an isomorphism.
 V^*
Proof: l is Linear because: Let $\vec{v}, \vec{v} \ge V$ and $a \in F$. For all fev
 $l(a\vec{v}, + \vec{v}_2)(f) = f(a\vec{v}, + \vec{v}_2) = af(\vec{v}_1) + f(\vec{v}_2)$ (\therefore f is linear)
 $l(a\vec{v}, + \vec{v}_2)(f) = f(a\vec{v}, + \vec{v}_2) = af(\vec{v}_1) + l(\vec{v}_2)(f) = (al(\vec{v}_1) + l(\vec{v}_2))f)$
 $= al(\vec{v}_1)(f) + l(\vec{v}_2)(f) = (al(\vec{v}_1) + l(\vec{v}_2))f$
To prove that l is an isomorphism, we can just show
that l is $l = 1$ (since dim $l(v) = \operatorname{dim}(V^{**})$)

Suppose
$$l(\vec{v}) = 0$$
 in V^{**} .
 $\Rightarrow l(\vec{v})(f) = 0$ for all $f \in V^*$
Then: $f(\vec{v}) = 0$ for all $f \in V^*$
The only possibility is $\vec{v} = \vec{0}$.
(if $\vec{v} \neq \vec{0}$, then construct a besis $[\vec{v}, \vec{v}_{2}, ..., \vec{v}_{N}]$.)
Define $f \Rightarrow f(\vec{v}) = 1$ and $f(\vec{v}_{j}) = 0$ for $j = 2, ...$
... Null(L) = $\{\vec{v}\}$. Thus, L is $1-1$ and onto.

onto

100

ACCOUNT COL AS

. ~

(isomorphism)

n

Charter.