MATH2048: Honours Linear Algebra II 2024/25 Term 1

Homework 8

Problems

Please give reasons for your solutions to the following homework problems. Submit your solution in PDF via the Blackboard system before **2024-11-08** (Friday) 23:59.

- 1. Let $V = \mathbb{C}^3$, $S = \{(1, i, 0), (1 i, 2, 4i)\} \subset V$.
 - (a) Find an orthonormal basis for span(S). *Proof.* Using Gram-Schmidt process, we get $\{\frac{1}{\sqrt{2}}(1, i, 0), \frac{1}{\sqrt{17}}(1 - i, 2, 4i)\}$.
 - (b) Extend S to get an orthonormal basis S' of V. *Proof.* We add $\frac{1}{\sqrt{34}}(4i, -4, -i - 1)$.
 - (c) Let x = (3 + i, 4i, -4). Prove that $x \in \text{span}(S)$. *Proof.* (3 + i, 4i, -4) = 2(1, i, 0) + i(1 - i, 2, 4i).
- 2. Let W_1 and W_2 be subspaces of a finite-dimensional inner product space. Prove that $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$ and $(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$.

Proof. Since W_1 and W_2 are subspaces of $W_1 + W_2$, we have $(W_1 + W_2)^{\perp} \subset W_1^{\perp} \cap W_2^{\perp}$. Conversely, for any $v \in W_1^{\perp} \cap W_2^{\perp}$, $\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle = 0$ for arbitrary $w_1 \in W_1$ and $w_2 \in W_2$. Hence, $W_1^{\perp} \cap W_2^{\perp} \subset (W_1 + W_2)^{\perp}$. Similar arguments shows the second equality.

3. Let V be the vector space of all sequence σ in F (where $F = \mathbb{R}$ or \mathbb{C}) such that $\sigma(n) \neq 0$ for only finitely many positive integers n. For $\sigma, \mu \in V$, we define

$$\langle \sigma, \mu \rangle = \sum_{n=1}^{\infty} \sigma(n) \overline{\mu(n)}.$$

Since all but a finite number of terms of the series are zero, the series converges.

- (a) Prove that $\langle \cdot, \cdot \rangle$ in an inner product on V, and hence V is an inner product space. *Proof. Conjugate symmetry:* $\langle \sigma, \mu \rangle = \sum_{n=1}^{\infty} \sigma(n) \overline{\mu(n)} = \sum_{n=1}^{\infty} \overline{\mu(n) \overline{\sigma(n)}} = \overline{\langle \mu, \sigma \rangle}.$ *Linearity:* $\langle a\mu + b\nu, \sigma \rangle = \sum_{n=1}^{\infty} (a\mu(n) + b\nu(n)) \overline{\sigma(n)} = a \langle \mu, \sigma \rangle + b \langle \nu, \sigma \rangle.$ Positivedefiniteness: $\langle \mu, \mu \rangle = \sum_{n=1}^{\infty} |\mu(n)|^2 > 0$ for any nonzero μ .
- (b) For each positive integer n, let e_n be the sequence defined by $e_n(k) = \delta_{n,k}$, where $\delta_{n,k}$ is the Kronecker delta. Prove that $\{e_1, e_2, ...\}$ is an orthonormal basis for V. *Proof.* Trivial arguments.
- (c) Let $\sigma_n = e_1 + e_n$ and $W = \operatorname{span}(\{\sigma_n : n \ge 2\})$.

- i. Prove that $e_1 \notin W$, so $W \neq V$. *Proof.* Observe that any non-zero element in W contains a non-zero entry for indices larger than 1. The result then follows.
- ii. Prove that $W^{\perp} = \{0\}$, and conclude that $W \neq (W^{\perp})^{\perp}$. *Proof.* Pick arbitrary $v \in W^{\perp}$ and suppose $v = v_1 e_1 + \dots + v_k e_k + \dots \langle v, e_1 + e_n \rangle = 0$ implies $v_1 = -v_n$ for any n > 1. Besides, $\langle v, e_1 + e_i - (e_1 + e_j) \rangle = 0$ implies $v_j = -v_i$ for any i, j > 1 satisfying $i \neq j$. The two equalities force $v_n = 0$ for any $n \geq 1$.
- 4. Let V and $\{e_1, e_2, ...\}$ be defined as in Q3. Define $T: V \to V$ by

$$T(\sigma)(k) = \sum_{i=k}^{\infty} \sigma(i)$$
 for every positive integer k.

Note that the infinite series in the definition of T converges because $\sigma(i) \neq 0$ for only finitely many *i*.

- (a) Prove that T is a linear operator on V. *Proof.* Trivial argument.
- (b) Prove that for any positive integer $n, T(e_n) = \sum_{i=1}^{n} e_i$. *Proof.* Trivial argument.
- (c) Prove that T has no adjoint.

Proof. Suppose T has an adjoint T^* . Fix $n \ge 1$. Then, for arbitrary $m \ge n$, $\langle e_m, T^*(e_n) \rangle = \langle T(e_m), e_n \rangle = \langle \sum_{i=1}^m e_i, e_n \rangle = 1$. Since $\{e_1, e_2, \cdots\}$ is an orthonormal basis, $\langle e_m, T^*(e_n) \rangle$ is the value of the *m*-th entry of $T^*(e_n)$. The above results imply that $T^*(e_n)$ is not a sequence with finite non-zero entries, which is a contradiction.

5. Prove that if $V = W \oplus W^{\perp}$ and T is the projection on W along W^{\perp} , then $T = T^*$.

Proof. It suffices to prove T and T^* coincide on W and W^{\perp} . Then, $T = T^*$ on V follows by linearity of T. Take arbitrary $w \in W$ and $v \in V$ such that $v = w_1 + w_2$ for $w_1 \in W$ and $w_2 \in W^{\perp}$. So, $\langle T^*w, v \rangle = \langle T^*w, w_1 + w_2 \rangle = \langle w, Tw_1 \rangle + \langle w, Tw_2 \rangle = \langle w, Tw_1 \rangle$ because the projection operator T maps w_2 to 0. We hence have $\langle w - T^*w, w_1 \rangle = 0$ for any $w_1 \in W$, which implies $Tw = w = T^*w$. An almost same argument shows $T^*w^{\perp} = Tw^{\perp}$ for any $w^{\perp} \in W^{\perp}$.