
MATH2048: Honours Linear Algebra II
2024/25 Term 1

Homework 6

Problems

Please give reasons for your solutions to the following homework problems.
Submit your solution in PDF via the Blackboard system before 2024-10-25 (Friday) 23:59.

1. Let T ∈ L(P2(R)) be defined by T (f(x)) = af(0) + f(−1)(x + x2). Prove that T is not
diagonalizable for any a ∈ R.
Proof. For any real c1, c2, and c3, T (c1x

2 + c2x+ c3) = ac3 + (c1 − c2 + c3)(x+ x2). The
characteristic polynomial is then x2(a − x). By some computation of the dimension of
eigenspaces, we see T is not diagonalizable for any a.

2. Let A ∈ Mn×n(F ).

(a) Show that A and AT have the same characteristic polynomials and eigenvalues.

Proof. Notice that pA(t) = det(A− tI) = det((A− tI)T ) = det(AT − tI) = pAT (t).

(b) Give an example that A and AT could have different eigenspaces for a given common
eigenvalue.

Proof. A =

(
2 1
0 1

)
.

(c) Prove that for any common eigenvalue λ, γA(λ) = γAT (λ).

Proof. This follows from the rank-nullity theorem and the fact that A − λI and
AT − λI share the same rank.

(d) Prove that if A is diagonalizable, then AT is also diagonalizable.

Proof. By (a), A and AT have the same eigenvalues. Further, (c) implies that for
each eigenvalue λ, the dimension of the corresponding eigenspaces of A and AT also
coincide. The result then follows.

3. Let A be a n × n matrix that is similar to an upper triangular matrix and has the
distinct eigenvalues λ1, λ2, ..., λk with corresponding multiplicities m1,m2, ..,mk. Prove
the following statements.

(a) tr(A) =
k∑

i=1

miλi

Proof. Write A = P−1UP , where P is invertible and U is upper triangular with
distinct eigenvalues λ1, λ2, ..., λk with corresponding multiplicities m1,m2, ..,mk. We
will use a basic property of trace. That is, for any square matrices A and B, we have
tr(AB) = tr(BA). So, tr(A) = tr(P−1UP ) = tr(UP−1P ) = tr(U) =

∑k
i=1miλi.
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(b) det(A) =
k∏

i=1

λmi
i

Proof. det(A) = det(P−1UP ) = det(P−1) det(U) det(P ) = det(U) =
∏k

i=1 λ
mi
i ,

where we have used det(P−1) = det(P )−1.

4. Let T be a linear operator on a finite-dimensional vector space V , and suppose that the
distinct eigenvalues of T are λ1, λ2, ..., λk.

(a) Prove that span({x ∈ V : x is an eigenvector of T} = Eλ1 ⊕ Eλ2 ⊕ · · ·Eλk
.

Proof. The left hand side is definitely the Minkowski sum of all the eigenspaces.
It remains to prove that it is actually a direct sum, which can be guaranteed if
Eλ1 ∪ Eλ2 = {0} for any λ1 ̸= λ2. Suppose v ∈ Eλ1 and also v ∈ Eλ2 , then
λ1v = T (v) = λ2v. So we must have v = 0.

(b) Hence, prove that V = Eλ1 ⊕ Eλ2 ⊕ · · ·Eλk
if T is diagonalizable.

Proof. If T is diagnalizable, the dimension of the left hand side of (a) coincides with
the dimension of V . We immediately get the desired result.

5. Let T be a linear operator on a vector space V , and suppose there exist linearly indepen-
dent non-zero vectors u, v ∈ V such that T (u) = 2v and T (v) = 2u. Prove that 2 and -2
are eigenvalues of T .
Hint: Construct eigenvectors corresponding to the eigenvalues.

Proof. Notice that T (u+ v) = T (u) + T (v) = 2(T (u) + T (v)) = 2T (u+ v), and similarly
T (u − v) = −2T (u − v). So, 2 and -2 are eigenvalues of T . The condition that u and v
are linearly independent is used implicitly to ensure u+ v and u− v are not zero vectors.
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