MATH2048: Honours Linear Algebra II 2024/25 Term 1

Homework 4

Problems

Please give reasons for your solutions to the following homework problems. Submit your solution in PDF via the Blackboard system before **2024-10-04** (Friday) 23:59.

1. Let V be a finite-dimensional vector space with an ordered basis β . Define $T: V \to F^n$ by $T(x) = [x]_{\beta}$. Prove that T is linear.

Proof. This follows from basic properties of matrix representation.

2. Let g(x) = 3 + x. Let $T : P_2(\mathbb{R}) \to P_2(\mathbb{R})$ and $U : P_2(\mathbb{R}) \to \mathbb{R}^3$ be the linear transformations respectively defined by

$$T(f(x)) = f'(x)g(x) + 2f(x)$$
 and $U(a + bx + cx^2) = (a + b, c, a - b).$

Let β and γ be the standard bases of $P_2(\mathbb{R})$ and \mathbb{R}^3 respectively.

- (a) Compute $[U]_{\beta}^{\gamma}, [T]_{\beta}$, and $[UT]_{\beta}^{\gamma}$. Then verify the equation $[UT]_{\beta}^{\gamma} = [U]_{\beta}^{\gamma} [T]_{\beta}$. *Proof.* We compute $T(1) = 2, T(x) = 3 + 3x, T(x^2) = 4x^2 + 6x, U(1) = (1, 0, 1),$ $U(x) = (1, 0, -1), \text{ and } U(x^2) = (0, 1, 0).$ The remaining part is just basic matrix multiplication. $[T]_{\beta} = \begin{pmatrix} 2 & 3 & 0 \\ 0 & 3 & 6 \\ 0 & 0 & 4 \end{pmatrix}, [UT]_{\beta}^{\gamma} = \begin{pmatrix} 2 & 6 & 6 \\ 0 & 0 & 4 \\ 2 & 0 & -6 \end{pmatrix}, [U]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$
- (b) Let $h(x) = 3 2x + x^2$. Compute $[h(x)]_{\beta}$ and $[U(h(x))]_{\gamma}$. Then verify the equation $[U(h(x))]_{\gamma} = [U]_{\beta}^{\gamma} [h(x)]_{\beta}$.

Proof.
$$[h(x)]_{\beta} = \begin{pmatrix} 3\\ -2\\ 1 \end{pmatrix}, \ [U(h(x))]_{\gamma} = \begin{pmatrix} 1\\ 1\\ 5 \end{pmatrix}, \ [U]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 1 & 0\\ 0 & 0 & 1\\ 1 & -1 & 0 \end{pmatrix}$$

- 3. Let V be a finite-dimensional vector space, and $T: V \to V$ be linear such that $T^2 = T$.
 - (a) Find all possible linear transformations T.

Proof. We characterize all such T by establishing a one-one correspondence between them and the set of all the subspaces of V via the operator f that maps T to R(T). For any such T, notice that T(T(x)) = T(x) for any $x \in V$. This implies R(T) is a T-invariant subspace. By Problem 3 of the previous homework, V = $R(T) \oplus N(T)$. So, any T_1 and T_2 sharing the same range must share the same kernel. Further, let $y \in R(T_1) = R(T_2)$ and suppose $y = T_1(x_1) = T_2(x_2)$. We see $T_1(y) = T_1(T_1(x_1)) = T_1(x_1) = y = T_2(x_2) = T_2(T_2(x_2)) = T_2(y)$. This proves $T_1 = T_2$ and hence the injectivity of the operator f. For the surjectivity of f, let $W \subset V$ be an arbitrary subspace with basis $\beta = \{v_1, \dots, v_k\}$. We extend β to a basis of $V: \{v_1, \dots, v_k, v_{k+1}, \dots, v_{k+n}\}$. Define T by letting $T(v_i) = v_i$ for $i = 1, \dots, k$ and $T(v_{i+j}) = 0$ for $j = 1, \dots, n$. Clearly, T fulfills the given requirements.

- (b) Suggest an ordered basis β for V such that [T]_β is a diagonal matrix. *Proof.* This follows from the surjectivity part of the previous proof. We observe that each T is a projection onto its range.
- 4. Let V be a finite-dimensional vector space, and $U, T: V \to V$ be linear.
 - (a) Prove or give a counter-example: If both U, T are isomorphism, then UT is an isomorphism. *Proof.* Recall from MATH1050 that UT is bijective if U and T are both bijective.

Proof. Recall from MATH1050 that UT is bijective if U and T are both bijective. It remains to prove UT is linear. Indeed, for any $x, y \in V$, we have UT(cx + y) = U(cT(x) + T(y)) = cUT(x) + UT(y).

(b) Prove or give a counter-example: If UT is an isomorphism, then both U, T are isomorphisms.

Proof. It suffices to show injectivity by the rank-nullity theorem. Take arbitrary $x \in ker(T)$, we see UT(x) = U(0) = 0. So, x lies in ker(UT) and must be zero. This shows that T is isomorphic. Now, take arbitrary $y \in ker(U)$. Since T is already isomorphic, y = T(x) for some x. So, U(y) = UT(x) = 0. This forces x to be 0 and hence y = 0. So, U is also isomorphic.