MATH2048: Honours Linear Algebra II 2024/25 Term 1

Homework 2 Solutions

Problems

Please give reasons for your solutions to the following homework problems. Submit your solution in PDF via the Blackboard system before **2024-09-20** (Friday) 23:59.

- 1. Let V and W be vector spaces over the field F, and let $S_1 = \{v_1, ..., v_n\}$ and $S_2 = \{w_1, ..., w_n\}$ with n > 1 be sets of vectors in V and W respectively. Consider the direct product $V \times W$.
 - (a) Prove or disprove: If S_1 and S_2 are linearly independent in V and W respectively, then $\{(v_1, w_1), ..., (v_n, w_n)\}$ is linearly independent in $V \times W$. *Proof.* Suppose $a_1(v_1, w_1) + \cdots + a_n(v_n, w_n) = (a_1v_1 + \cdots + a_nv_n, a_1w_1 + \cdots + a_nw_n) = (0, 0)$. Clearly, $a_1 = \cdots = a_n = 0$.
 - (b) Prove the following statement in the general case or give a counterexample with some specific V and W: If $\{(v_1, w_1), ..., (v_n, w_n)\}$ is linearly independent in $V \times W$, then S_1 and S_2 are linearly independent in U and V respectively. *Proof.* Consider the counterexample $V = W = \mathbb{R}^2$ and $v_1 = (1,0), v_2 = (1,0), w_1 = (1,0), w_2 = (0,1)$. Indeed, $\{(v_1, w_1), (v_2, w_2)\} = \{(1,0,1,0), (1,0,0,1)\}$ is linearly independent in \mathbb{R}^4 but S_1 is not in \mathbb{R}^2 .
- 2. Let V be a vector space with subspace W. Consider the set $V/W = \{v + W : v \in V\}$.
 - (a) Prove that v + W is a subspace if and only if $v \in W$. *Proof.* If v + W is a subspace, we have $0 \in v + W$. This implies $-v \in W$ and hence $v \in W$. Conversely, if $v \in W$, v + W is a subspace because v + W = W.
 - (b) Prove that addition and scalar multiplication are well-defined in V/W. That is, if v + W = v' + W, then for any $v'' + W \in V/W$, we have

$$(v+W) + (v''+W) = (v'+W) + (v''+W)$$

 $a \cdot (v+W) = a \cdot (v'+W).$

Proof. Recall the definition (v + W) + (v'' + W) = (v + v'') + W. Take arbitrary $(v + v'' + w) \in (v + v'') + W$. The condition v + W = v' + W implies $v + w = v' + w_1$ for some $w_1 \in W$. So, $v + v'' + w = v'' + v' + w_1 \in (v' + v'') + W$. For the scalar multiplication, also recall first the definition $a \cdot (v + W) = av + W$. Take arbitrary $w \in W$, we see $v + w/a = v' + w_1/a$ for some w_1 . So, $av + w = av' + w_1 \in a \cdot (v' + W)$.

- (c) Hence, prove that V/W is a vector space over F with the addition and scalar multiplication defined above. *Proof.* This is a direct consequence of the previous question and the definition of vector spaces.
- (d) Prove or disprove: If v₁ + W and v₂ + W is linearly independent in V/W, then v₁ and v₂ are linearly independent in V. *Proof.* Suppose a₁v₁ + a₂v₂ = 0. Then, 0 + W = (a₁v₁ + a₂v₂)W = a₁(v₁ + W) + a₂(v₂ + W). By the assumption that v₁ + W and v₂ + W is linearly independent in V/W, we have a₁ = a₂ = 0. Hence, v₁ and v₂ are linearly independent in V.
- 3. Suppose $W = \{(x, y, x, y) \in F^4 \mid x, y \in F\}$, where F is a field.
 - (a) Prove that W is a subspace of $V = F^4$. What is the dimension of W? *Proof.* This directly follows from the definition. The dimension of W is 2.
 - (b) Suggest a basis for V/W.

Proof. Observe that a basis for W is $\{(1,0,1,0), (0,1,0,1)\}$. We extend it to a basis of V: $\{(1,0,1,0), (0,1,0,1), (1,0,-1,0), (0,1,0,-1)\}$. So, a basis for V/W is $\{(1,0,-1,0) + W, (0,1,0,-1) + W\}$.

4. Let V be the space of all functions from \mathbb{N} to \mathbb{Z}_2 that are zero outside a finite subset of \mathbb{N} . Suggest a basis for V. Suppose we do not allow infinite sum. Then, could you find a countable basis for $\mathcal{F}(\mathbb{N},\mathbb{Z}_2)$, which contains all functions from \mathbb{N} to \mathbb{Z}_2 ? Please explain. (Remark: \mathbb{Z}_2 is the field with two elements 0 and 1.)

Proof. For $i \geq 1$, let $f_i(k) = 1$ for k = i and 0 otherwise. $(f_i)_{i\geq 1}$ is a basis for V. Now we prove by contradiction there is no countable basis for $\mathcal{F}(\mathbb{N},\mathbb{Z}_2)$. First recall from MATH1050 two important facts: (i) $\mathcal{F}(\mathbb{N},\mathbb{Z}_2)$ has cardinality $2^{\mathbb{N}}$ and is therefore uncountable; (ii)the countable union of countable sets is countable. Suppose $(f_i)_{i\geq 1}$ is a countable basis for $\mathcal{F}(\mathbb{N},\mathbb{Z}_2)$. Let \mathcal{F}_k be the subspace generated by $\{f_1, \dots, f_k\}$. \mathcal{F}_k consists of functions of the type $a_1f_1 + \dots + a_kf_k$, where $a_i \in 0, 1$. There is a nature correspondence between \mathcal{F}_k and \mathbb{Z}_2^k by sending $\{f_1, \dots, f_k\}$ to (a_1, \dots, a_k) . As \mathbb{Z}_2^k is countable, \mathcal{F}_k is therefore countable for any k. Notice that $\mathcal{F}(\mathbb{N},\mathbb{Z}_2) = \bigcup_{k\geq 1}\mathcal{F}_k$. We instantly have $\mathcal{F}(\mathbb{N},\mathbb{Z}_2)$ is countable, which is a contradiction.