MATH2048: Honours Linear Algebra II 2024/25 Term 1

Homework 1 Sol

Problems

Please give reasons for your solutions to the following homework problems. Submit your solution in PDF via the Blackboard system before **2024-09-13** (Friday) 23:59.

1. Show that the set of differentiable real-valued functions f on \mathbb{R} such that f'(0) = 2f(1) is a vector space.

Proof. It suffices to check that it is a subspace of the space of real-valued functions. Let $a \in \mathbb{R}$, f, g be arbitrary. Then (af+g)'(0) = af'(0)+g'(0) = 2af(1)+2g(1) = 2(af+g)(1). The result follows.

- 2. Let V be a vector space over an infinite field F.
 - (a) Let W_1, W_2 be subspaces of V such that $W_1 \nsubseteq W_2$ and $W_2 \nsubseteq W_1$. Prove that $W_1 \cup W_2$ is not a subspace of V.

Proof. We prove it by contradiction. Assume first $W_1 \cup W_2$ is a subspace. Find nontrivial $x \in W_1$ and $y \in W_2$ such that $x \notin W_2$ and $y \notin W_1$. If $(x+y) \in W_1$. Then, $(x+y) + (-x) = y \in W_1$, a contradiction. If $(x+y) \in W_2$. Then, $(x+y) + (-y) = x \in W_2$, also a contradiction.

(b) Construct a nontrivial vector space V and a set of subspaces $\{W_i\}_{i=0}^{\infty}$ of V such that $W_i \notin W_j$ for all $i \neq j$ and $\bigcup_{i=0}^{\infty} W_i$ is a subspace of V. Hint: Consider $V = \mathbb{Q}^2$, and W_i are the set $\{(0,q) : q \in \mathbb{Q}\}$ and the sets $\{(q,pq) : q \in \mathbb{Q}\}$ for all $p \in \mathbb{Q}$.

Proof. Following the hint, let $p_i, i \ge 1$ be an enumeration of rational numbers. Let $W_0 = span\{(0,1)\}$, and $W_i = span\{(1,p_i)\}$. Notice that $(1,p_i) = (q,qp_j)$ for some q implies q = 1 and $p_i = p_j$. Thus, the subspaces $W_i, i \ge 0$ satisfy the given condition. Besides, since $(q_1,q_2) = q_1(1,q_2/q_1)$ for any pair (q_1,q_2) , we have $\mathbb{Q}^2 = \bigcup_i W_i$. This finishes the proof.

3. Suppose $v_1, ..., v_n$ is linearly independent in V. For any nonzero $a_1, ..., a_n \in F$, Prove that the list

$$a_1v_1 + a_2v_2, a_2v_2 + a_3v_3, \dots, a_{n-1}v_{n-1} + a_nv_n$$

is linearly independent.

Proof. Suppose $b_1(a_1v_1 + a_2v_2) + \cdots + b_{n-1}(a_{n-1}v_{n-1} + a_nv_n) = 0$. Simple algebra yields $a_1b_1v_1 + (a_2b_1 + b_2a_2)v_2 + \cdots + a_nb_{n-1}v_n = 0$. Since v_1, \cdots, v_n is linearly independent in V, all of the coefficients should zero. a_1 is nonzero instantly gives $b_1 = 0$. By an induction argument, we get b_i are all zero for $i = 1, \cdots, n-1$. Hence, the given list is linearly independent.

4. Prove that if W_1 and W_2 are finite-dimensional subspaces of a vector space V, then the subspace $W_1 + W_2$ is finite-dimensional, and

 $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$

Hint: Start with a basis $\{u_1, u_2, ..., u_k\}$ for $W_1 \cap W_2$ and extend this set to a basis $\{u_1, u_2, ..., u_k, v_1, v_2, ..., v_m\}$ for W_1 and to a basis $\{u_1, u_2, ..., u_k, w_1, w_2, ..., w_p\}$ for W_2 .

Proof. Following the hint, notice that all the elements in $W_1 \cap W_2$ can be written as a linear combination of $\{u_1, u_2, \dots, u_k\}$. So, all of $\{v_1, \dots, v_m\}$ are not in W_2 and all of $\{w_1, \dots, w_p\}$ are not in W_1 . What follows is that $\{u_1, \dots, u_k, v_1, \dots, v_m, w_1, \dots, w_p\}$ is a basis for $W_1 + W_2$. Hence, $\dim(W_1 + W_2) = k + m + p = (k + m) + (k + p) - k = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$.

5. Let $V = M_{n \times n}(\mathbb{C})$ be a vector space over \mathbb{R} . Given that the sets

 $U = \{A \in V : \text{all entries of } A \text{ are real} \}$ $W = \{A \in V : \text{all entries of } A \text{ are purely imaginary} \}$

are subspaces of V (no need to prove this). Show that $V = U \oplus W$. What is the dimension of V?

Proof. Let $A \in V$ and denote by a_{ij} the (i, j)-th entry of A. Write $a_{ij} = b_{ij} + ic_{ij}$, where b_{ij} and c_{ij} is real. Take $B \in U$ and $C \in W$ such that the (i, j)-th entry of B is b_{ij} and the (i, j)-th entry of C is ic_{ij} . Clearly, A = B + C. This proves V = U + W. Besides, notice that $U \cap W$ contains only the zero matrix. This desired result then follows. Using the formula proved in the previous problem, the dimension of V is $2n^2$.