
MATH2040A Week 9 Tutorial Notes

1 Inner Product

1.1 Inner Product Space

A vector space has no structure to talk about anything other than linear relations. However, we also want to
talk about the “size” of a vector and the “angle” between two vectors, in a way that is similar to the (usual)
Euclidean space. To do so, we simple add more structures to a (plain) vector space, which leads to the following
definition of (real / complex) inner product space:

Definition 1.1. An inner product space is a vector space V = (V, F,+, · ) with real (F = R) or complex (F = C)
scalar field1, additionally equipped with a binary operation ⟨ ·, · ⟩ : V × V → F that satisfies the following
requirements:

• for each y ∈ V , x 7→ ⟨ x, y ⟩ is a linear map

• for every x ∈ V , ⟨ x, x ⟩ ≥ 0 and equality holds if and only if x = 0 (in particular, ⟨ x, x ⟩ is real)

• for every x, y ∈ V , ⟨ x, y ⟩ = ⟨ y, x ⟩, where z is the (complex) conjugate on F

The binary map ⟨ ·, · ⟩ is an inner product of the space V .

Typical examples of inner products are

• the (usual) dot product ⟨ x, y ⟩ =
∑n

i=1 xiyi is an inner product of Rn

• for each a < b, ⟨ f, g ⟩ =
∫ b

a
f(t)g(t) dt is an inner product of C 0([a, b],R), the space of real-valued continuous

functions on [a, b]

and their complex analogs.

1.2 Normed Space

Given an inner product ⟨ ·, · ⟩, we can induce a notion of “size” on vectors ∥ x ∥ =
√
⟨ x, x ⟩ ≥ 0, which you can

show that the following properties hold:

• for every x ∈ V , ∥ x ∥ ≥ 0, and ∥ x ∥ = 0 if and only if x = 0

• for every x ∈ V and c ∈ F , ∥ cx ∥ = | c | ∥ x ∥ where | c | is the modulus / absolute value of scalar c

• (triangle inequality) for every x, y ∈ V , ∥ x+ y ∥ ≤ ∥ x ∥+ ∥ y ∥

Definition 1.2. A normed space is a real (or complex) vector space equipped with a map ∥ · ∥ : V → F that
satisfies the above 3 conditions. The map ∥ · ∥ is a norm of the space V .

So the inner product naturally induces a norm.
Given a norm ∥ · ∥, we can define a notion of “distance” between vectors (as the size of their difference),

a notion of “neighbourhood” (consisting of vectors with small distances), and many more concepts from usual
Euclidean spaces that you are familiar with.

1While in principle we can talk about arbitrary scalar field, it requires some (strong) conditions on the scalar field to make sense
of the conditions. See this question on MSE and this question on MO. For simplicity, in this course we will only consider real or
complex inner product spaces.
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1.3 Properties of Inner Product and Norm

Here are some properties of inner product and the induced norm that are easy to verify:

• ∥ x ∥2 = ⟨ x, x ⟩ ≥ 0 and equality holds if and only if x = 0

•
〈 ∑

j cjxj ,
∑

k dkyk

〉
=
∑

j

∑
k cjdk ⟨ xj , yk ⟩. In particular, for each x ∈ V , y 7→ ⟨ x, y ⟩ is conjugate

linear: ⟨ x, ay + bz ⟩ = a ⟨ x, y ⟩+ b ⟨ x, z ⟩

• ⟨ x, y ⟩ = 0 for all y if and only if x = 0. Equivalently, ⟨ x, y ⟩ = ⟨ z, y ⟩ for all y if and only if x = z.

• (Cauchy–Schwartz inequality) | ⟨ x, y ⟩ | ≤ ∥ x ∥ ∥ y ∥

• (Pythagorean theorem) If ⟨ v, w ⟩ = 0, ∥ v + w ∥2 = ∥ v ∥2 + ∥ w ∥2

• (Parallelogram law) ∥ x+ y ∥2 + ∥ x− y ∥2 = 2 ∥ x ∥2 + 2 ∥ y ∥2

There are many uses of Cauchy–Schwartz inequality that you may have already seen in high school.

2 Gram–Schmidt Process

Definition 2.1. In an inner product space,

• a set S of vectors is orthogonal if every distinct x, y ∈ S, ⟨ x, y ⟩ = 0

• a vector v is a unit vector if ∥ v ∥ = 1

• a set S is orthonormal if it is an orthogonal set of unit vectors. If S = { v1, v2, . . . }, this means that
⟨ vj , vk ⟩ = δjk

If β = { e1, . . . , en } is an orthogonal basis, then we have a simple computation of the representation of

each vector: v =
∑ ⟨ v, ej ⟩

∥ ej ∥2 ej . If β is also orthonormal, this simplifies to v =
∑

⟨ v, ej ⟩ ej . This property of

orthonormal basis greatly simplifies many computations (e.g. computing coordinate / matrix representation).
Given a (countable2) linearly independent set S = { v1, v2, . . . }, Gram–Schmidt process can convert it to a

linearly independent orthogonal set S′ that has the same span as S:

• w1 = v1

• for j ≥ 2, wj = vj −
∑

k<j
⟨vj , wk ⟩
∥wk ∥2 wk = vj − ( projection of vj onto Span( { w1, . . . , wj−1 } ) )

then S′ = { w1, w2, . . . }. As noted in lecture,

• wj = 0 if { v1, . . . , vj } is linearly dependent, so wj ̸= 0 if S is linearly independent

• S′ is orthogonal and so is also linearly independent (as 0 /∈ S′)

• Span( S′ ) = Span( S ), and in particular S′ is an orthongonal basis of Span( S )

Typically, we also normalize S′ to S′′ = { e1, e2, . . . } with ej = wj/ ∥ wj ∥, so that S′′ is orthonormal.
The same process can also be applied to linearly dependent S, as long as we skip all vj and wj that are zero.

3 Exercises

1. (Textbook Sec. 6.1 Q20)

Let V be an inner product space over F . Prove the polarization identities: For all x, y ∈ V ,

(a) ⟨ x, y ⟩ = 1
4 ∥ x+ y ∥2 − 1

4 ∥ x− y ∥2 if F = R

(b) ⟨ x, y ⟩ = 1
4

∑4
k=1 i

k
∥∥ x+ iky

∥∥2 if F = C

2It is possible to consider uncountably infinite set, although this would require more machineries.
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Solution:

(a) For x, y ∈ V ,

1

4
∥ x+ y ∥2 − 1

4
∥ x− y ∥2

=
1

4
( ⟨ x+ y, x+ y ⟩ − ⟨ x− y, x− y ⟩ )

=
1

4
( ⟨ x, x ⟩+ ⟨ x, y ⟩+ ⟨ y, x ⟩+ ⟨ y, y ⟩ − ⟨ x, x ⟩+ ⟨ x, y ⟩+ ⟨ y, x ⟩ − ⟨ y, y ⟩ )

=
1

2
( ⟨ x, y ⟩+ ⟨ y, x ⟩ )

= ⟨ x, y ⟩

(b) For x, y ∈ V ,

1

4

4∑
k=1

ik
∥∥ x+ iky

∥∥2 =
1

4

4∑
k=1

ik
〈
x+ iky, x+ iky

〉
=

1

4

4∑
k=1

ik
(
⟨ x, x ⟩+

〈
x, iky

〉
+
〈
iky, x

〉
+
〈
iky, iky

〉 )
=

1

4

4∑
k=1

ik
(
⟨ x, x ⟩+ i−k ⟨ x, y ⟩+ ik ⟨ y, x ⟩+ ⟨ y, y ⟩

)
=

1

4

(
4∑

k=1

ik

)
( ⟨ x, x ⟩+ ⟨ y, y ⟩ ) + 1

4

4∑
k=1

⟨ x, y ⟩+ 1

4

4∑
k=1

i2k ⟨ y, x ⟩

= ⟨ x, y ⟩

Note

A result attributed to von Neumann (sometimes together with Fréchet and Jordan) states that a norm
is induced from an inner product if and only if it satisfies the parallelogram law, in which case the inner
product can be recovered from the polarization identity.

With the same approach, you can show the following result: on n ≥ 3, if ω ̸= ±1 satisfies ωn = 1, then

⟨ x, y ⟩ = 1
n

∑n
k=1 ω

k
∥∥ x+ ωky

∥∥2 on a complex inner product space.

2. Let V be a complex inner product space. Find all T ∈ L(V ) such that ⟨ Tv, v ⟩ = 0 for all v ∈ V .

Solution: Let T ∈ L(V ) be one such map.
Let x ∈ V , y = Tx ∈ V . Then

0 = ⟨ T (x+ y), x+ y ⟩
= ⟨ Tx, x ⟩+ ⟨ Ty, y ⟩+ ⟨ Tx, y ⟩+ ⟨ Ty, x ⟩
= ⟨ Tx, y ⟩+ ⟨ Ty, x ⟩

0 = ⟨ T (x+ iy), x+ iy ⟩
= ⟨ Tx, x ⟩+ ⟨ T (iy), iy ⟩+ ⟨ Tx, iy ⟩+ ⟨ T (iy), x ⟩
= −i ⟨ Tx, y ⟩+ i ⟨ Ty, x ⟩

which implies that ∥ Tx ∥2 = ⟨ Tx, y ⟩ = 0, and so Tx = 0.
As x ∈ V is arbitrary, T = 0.
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It is easy to verify that T = 0 satisfies the condition, so the zero map is the only linear map that satisfies
the condition.

Note

You can see that such operator must be “close to zero” in some sense: if λ is an eigenvalue of T with
an associated eigenvector v ̸= 0, then 0 = ⟨ Tv, v ⟩ = λ ∥ v ∥2, so λ = 0. This means that such operator
cannot have any eigenvalue other than 0. Of course, this is not sufficient to claim that T = 0 (e.g. T may
not have any eigenvalue at all).

For arguably a more pragmatic approach (that utilizes the concept of self-adjoint, which should be covered
in lecture soon), see this answer on MSE.

This result does not hold if the space is over real numbers: consider V = R2 equipped with the usual
structures, and T ∈ L(V ) is the rotation by π/2 radian, or more precisely, T is the left multiplication by

the matrix

(
0 −1
1 0

)
.

3. Let V be an inner product space, x, y ∈ V , λ ∈ [0, 1], z = λx+ (1− λ)y.

Show that ∥ x ∥2 ∥ z − y ∥+ ∥ y ∥2 ∥ z − x ∥ = ∥ x− y ∥ (∥ z ∥2 + ∥ x− z ∥ ∥ y − z ∥).

Solution:

∥ x− y ∥ (∥ z ∥2 + ∥ x− z ∥ ∥ y − z ∥)

= ∥ x− y ∥
(
∥ λx+ (1− λ)y ∥2 + ∥ (1− λ)(x− y) ∥ ∥ λ(y − x) ∥

)
= ∥ x− y ∥

(
∥ λx+ (1− λ)y ∥2 + λ(1− λ) ∥ x− y ∥2

)
= ∥ x− y ∥

(
(λ2 + λ(1− λ)) ∥ x ∥2 + ((1− λ)2 + λ(1− λ)) ∥ y ∥2

)
= ∥ x ∥2 ∥ λ(x− y) ∥+ ∥ y ∥2 ∥ (1− λ)(x− y) ∥

= ∥ x ∥2 ∥ z − y ∥+ ∥ y ∥2 ∥ z − x ∥

Note

In the context of Euclidean geometry (with V = R2 with the usual structures), this is Stewart’s theorem
that you may have learned in high school (especially if you did math competitions), which states that

in a triangle ABC with D being a point on BC, | AB |2 | CD | + | AC |2 | BD | = | BC | (| AD |2 +
| BD | | CD |).
If λ = 1/2, this is Apollonius’s theorem, which states that in a triangle ABC with median AD, | AB |2+
| AC |2 = 2(| AD |2 + | BD |2).

4. Let V be an inner product space, n ∈ Z+, S = { v1, . . . , vn } ⊆ V be linearly independent. Show that there
exists w ∈ V such that ⟨ w, vj ⟩ = 1 for each j.

Solution: We will find one such vector w in Span( S ). For simplicity, we will instead work with or-
thonormal S′ = { e1, . . . , en } by applying Gram–Schmidt process on S, which by the property of the
process has the same span Span( S′ ) = Span( S ).

A vector w =
∑

ckek ∈ Span( S′ ) with c1, . . . , cn ∈ F satisfies the condition if and only if the coefficients
ck satisfy 1 = ⟨ w, vj ⟩ =

∑
k ⟨ ek, vj ⟩ ck for each j. So, such vector w ∈ Span( S′ ) exists if and only if
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the equation
Lc = s

has a solution for c, with column vectors c =
(
c1 . . . cn

)T
, s =

(
1 . . . 1

)T
, and matrix Ljk =

⟨ ek, vj ⟩.

By the definition of Gram–Schmidt process, e1 = a−1
1 v1 and ej = a−1

j (vj −
∑j−1

k=1 ⟨ vj , ek ⟩ ek) for j ≥ 2

with a1 = ∥ v1 ∥ > 0, aj =
∥∥∥ vj −

∑j−1
k=1 ⟨ vj , ek ⟩ ek

∥∥∥ > 0, with positivity due to S being linearly

independent.
This implies that v1 = a1e1 and vj = ajej +

∑j−1
k=1 ⟨ vj , ek ⟩ ek for j ≥ 2. In particular, for each j we

have vj ∈ Span( { e1, . . . , ej } ).
Since S′ = { e1, . . . , en } is orthonormal, for all j, k, Ljj = ⟨ ej , vj ⟩ = aj > 0 and Ljk = ⟨ ek, vj ⟩ = 0
whenever k > j.
This implies that L is a lower triangular matrix with positive diagonal entries, and so L is invertible.

Therefore, there exists a (unique) solution c =
(
c1 . . . cn

)T
that solves Lc = s, and so such vector w

exists.

Note

The same argument also shows that on any given s1, . . . , sn ∈ F there exists a unique vector w ∈
Span( S ) ⊆ V such that ⟨ w, vj ⟩ = sj . We can compute the coefficients iteratively as cj = a−1

j (sj −∑j−1
k=1 ck ⟨ vj , ek ⟩) for all j (with usual convention for empty sum). The expressions being computation-

ally simple is exactly due to L being lower triangular.

If we abuse notation and write e =
(
e1 . . . en

)
as a row vector, then w = ec = eL−1s, which indicates

that s is the coordinate representation of w in the basis defined by eL−1.

More concretely, as noted in the proof, vj =
∑n

k=1 Ljkek =
∑n

k=1 ekRkj with R = L∗ being the
conjugate transpose of L which is upper triangular, so on any given orthonormal basis α (of any
finite dimensional subspace of V that contains Span( S )) and A =

(
[v1]α . . . [vn]α

)
, A = QR

with Q =
(
[e1]α . . . [en]α

)
which satisfies Q∗Q = In (this is the QR decomposition of A). The

vector w can then be represented as [w]α = Qc = QL−1s = A(R∗R)−1s, or in a basis-free way
w =

∑
k sk(

∑
j ej(L

−1)jk) =
∑

((R∗R)−1s)jvj .
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