
MATH2040A Week 8 Tutorial Notes

In this tutorial, we will consider only finite dimensional vector spaces.

1 Diagonalizability

A linear map T ∈ L(V ) on a vector space V is diagonalizable if there exists a basis of V that consists only of
eigenvectors of T . If T is diagonalizable with eigenbasis β, [T ]β is then a diagonal matrix. As noted in lecture,
diagonalizability depends on the behavior of the characteristic polynomial fT (t) = det([T ]α − tI):

Theorem 1.1. T is diagonalizable if and only if fT splits and the algebraic multiplicity of each eigenvalue is the
same as their geometric multiplicity1.

Here,

• a polynomial splits if it can be factorized into linear factors (of form X − a) (optionally multiplied by a
constant): p(X) = c(X − a1) . . . (X − ak)

• the algebraic multiplicity of a root λ of a polynomial p(X) is the largest integer mλ ≥ 1 such that (X−λ)mλ

is a factor of p(X)

• the geometric multiplicity of an eigenvalue λ of a linear map T is nullity(T − λI) = dimN ( T − λI )

As noted in lecture,

• a complex polynomial always splits

• for eigenvalue λ of T , 1 ≤ nullity(T − λI) ≤ mλ ≤ n

• if p(X) splits and all (unique) roots are λ1, . . . , λk, then
∑

mλi
= n

So, to check if a linear map T is diagonalizable, typically you would need to

1. compute the characteristic polynomial, usually by computing the determinant

2. factorize the characteristic polynomial and check if it splits

3. for each eigenvalue, compute the dimension of N ( T − λI ), usually by finding a basis

4. check for each eigenvalue if the two multiplicities match

Once diagonalizability is verified, it is simple to find a diagonalizing basis:

Theorem 1.2. If T is diagonalizable with (unique) eigenvalues λ1, . . . , λk, and βi is a basis of N ( T −λI ), then
β = β1 ∪ . . . ∪ βk is an eigenbasis of V

So, to construct an eigenbasis, you just need to merge all bases you find in step 3 above into one basis.
By definition of diagonalizability, [T ]β = diag(λ1, . . . , λn) is diagonal if β = {v1, . . . , vn} is an eigenbasis with

associated eigenvalues λ1, . . . , λn, and so on a basis α of V we have [T ]α = Qdiag(λ1, . . . , λn)Q
−1 with Q = [Id]αβ .

In particular, if V = Fn, T = LA with A ∈ Fn×n, and α is the standard ordered basis, we recover the familiar
eigendecomposition from MATH1030:

A =

 | |
v1 . . . vn
| |


λ1

. . .

λn


 | |
v1 . . . vn
| |

−1

1Such eigenvalue is said to be semisimple.
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1.1 (Optional) Interpretation of Diagonalizability

Suppose T ∈ L(V ) is diagonalizable with (complete set of distinct) eigenvalues λ1, . . . , λk and associated eigenspace
E1 = N ( T − λ1Id ) , . . . , Ek. From the matrix representation in eigenbasis, we can see the following decomposi-
tions:

• V = E1 ⊕ . . .⊕ Ek
2

• If Pi ∈ L(V ) is the projection map onto Ei along
∑

j ̸=i Ej , then PiPj = 0 for i ̸= j,
∑

Pi = Id and∑
λiPi = T

Recall from textbook Sec. 2.3 Q17 (Homework 5 Optional part) that a linear map P ∈ L(V ) is a projection if
and only if P 2 = P .

Conversely, if V is a direct sum of eigenspaces of T , then T is diagonalizable: on basis βi of eigenspace Ei of
T , it is easy to verify that β =

⋃
βi is an eigenbasis of V . So, we have the following theorem:

Theorem 1.3. T is diagonalizable if and only if V is a direct sum of eigenspaces of T .

This decomposition is sometimes useful when working with diagonalizable operators. We will see more about
this decomposition later when we are talking about a similar theorem on inner product spaces.

2 Cayley–Hamilton Theorem

In the lecture the following theorem is proven:

Theorem 2.1 (Cayley–Hamilton theorem). If V is a finite dimensional vector and T ∈ L(V ) with characteristic
polynomial fT , then fT (T ) = 03.

The proof of this theorem is done by the following two concepts and one theorem:

Definition 2.1. The T -cyclic subspace generated by v ∈ V / Krylov subspace generated by T and v is K(T, v) =
Span

( {
T iv : i ≥ 0

} )
, which is the smallest T -invariant subspace that contains v.

Definition 2.2. For polynomial p(X) = (−1)n(Xn+cn−1X
n−1+ . . .+c0) ∈ P (F ), the corresponding companion

matrix is

A =


0 0 . . . 0 −c0
1 −c1

1 −c2
. . .

...
1 −cn−1

 ∈ Fn×n

which, as you can verify, has characteristic polynomial det(A− tI) = p(t)

Theorem 2.2. If W is a T -invariant subspace, then the characteristic polynomial fTW
of the restriction TW of

T on W is a factor of fT : there exists a polynomial g such that fT (t) = g(t) fTW
(t)

Occasionally this last theorem is quite powerful.
If dim(V ) = n, we have dim(L(V )) = n2 and so for a general linear map T ∈ L(V ) we may only expect

p(T ) = 0 for some polynomial with degree up to n2 − 1, with little information on what this polynomial can be.
Cayley–Hamilton theorem claims that this can always be done with a polynomial of degree n by choosing the
characteristic polynomial of T .

One use of Cayley–Hamilton theorem is to quickly compute Tm with large m (or in general p(T ) for some
polynomial p with high degree), with typical approaches like

2Here, V = W1 ⊕ . . .⊕Wk means that for each v ∈ V there exists unique wi ∈ Wi for each i such that v =
∑

wi. You can show
that this is equivalent to V = Wi ⊕ (

∑
j ̸=i Wj) for each i.

3Note that the characteristic polynomial fT is just one of many polynomials that makes p(T ) = 0 (annihilates T ). With some
knowledge from e.g. MATH3030, you can show that (a) there exists a unique nonzero polynomial pmin (the minimal polynomial) with
leading coefficient 1 and has minimal degree that annihilates T , and (b) every (nonzero) polynomial that annihilates T is a multiple
of pmin. Usually pmin is not the characteristic polynomial.
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• on fT (X) = (−1)nXn+
∑n−1

i=0 ciX
i, reduce each high order termXk with k ≥ n to a lower degree polynomial

via the identity Tn = (−1)n
∑n−1

i=0 ciT
i, then evaluate the low degree polynomial directly; or (equivalently)

• find the remainder polynomial r with deg(r) < n such that Xm = fT (X)q(X) + r(X), then evaluate r(T )

There are many ways to use Cayley–Hamilton theorem to simplify such computations.

3 Exercises

1. Let V be a finite dimensional vector space. Find all diagonalizable linear maps T ∈ L(V ) such that (T−Id)k =
0 for some k ≥ 1.

Solution: Let T ∈ L(V ) be one such map.
Let β = { v1, . . . , vn } be an eigenbasis of T , and λ1, . . . , λn be the associated eigenvalues.
Then for each i, (T − Id)vi = (λi − 1)vi, so 0 = (T − Id)kvi = (λi − 1)kvi.
This implies that for each i, (λi − 1)k = 0 and so λi = 1.
Thus T = Id.

It is easy to verify that T = Id satisfies the requirement, so the only linear map that satisfies (T−Id)k = 0
for some k ≥ 1 is the identity map Id.

2. For A =

(
1 4
−1 −3

)
∈ R2×2, compute A14(A+ 2I)13.

Solution: The characteristic polynomial of A is fA(t) = det(A−tI2) = det

(
1− t 4
−1 −3− t

)
= t2+2t+1.

By Cayley–Hamilton theorem A2 + 2A+ I = 0, so A(A+ 2) = −I.

This implies that A14(A+ 2I)13 = (A(A+ 2))13A = (−I)13A = −A =

(
−1 −4
1 3

)

Note

Typically, there seems to be (at least) 3 ways to compute a matrix polynomial:

• compute the matrix exponential A0 = I,A,A2, . . . iteratively. With some tricks, you can compute
compute A14(A+ 2I)13 with about 7 matrix multiplications

• diagonalize A = Q−1DQ with diagonal D, then evaluate A14(A+ 2I)13 = Q−1
(
D14(D + 2I)13

)
Q

where the middle term can be evaluated quickly since it is just operations on diagonal matrices.
However, diagonalizing a matrix requires quite some computations, and A is not diagonalizable
even when we consider the complex field.
(Instead of diagonalization, you can consider converting A into Jordan normal form, but that
appears to be beyond the syllabus)

• find the remainder polynomial r(t) such that p(t) = q(t)fA(t) + r(t), then evaluate r(A) by other
means (e.g. compute directly, which is usually easy enough)

The approach here in this solution, on the other hand, is to exploit the structure of the target polynomial
and simplify it with the identity given by Cayley–Hamilton theorem.
As you may imagine, this approach is critically affected by the form of the characteristic polynomial.

For example, consider B = A +

(
1 0
0 0

)
=

(
2 4
−1 −3

)
which has characteristic polynomial t2 + t − 2.

Cayley–Hamilton theorem does not (seem to) give a quick way to simplify B14(B + 2I)13, and in this
case other approaches would preferable. (For example, B is diagonalizable.)
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Solution: Here is another (more) brute-force approach with Cayley–Hamilton theorem.

The characteristic polynomial of A is fA(t) = t2 + 2t + 1 = (t + 1)2. On p(t) = t14(t + 2)13, the degree
of the remainder polynomial is at most 1.
More explicitly, p(t) = q(t)(t+ 1)2 + at+ b for some scalars a, b ∈ R and some polynomial q(t) ∈ P(R).
Evaluating p and its (formal) derivative p′ at t = −1, we obtain 1 = p(−1) = −a + b and −14 + 13 =

p′(−1) = a, which implies a = −1, b = 0, and so by Cayley–Hamilton theorem p(A) = −A =

(
−1 −4
1 3

)
.

Note

Here, the (formal) derivative D : p 7→ p′ is the linear map on P(F ) = F [X] that maps each monomial Xn

to nXn−1. You can verify that this (formal) derivative on polynomials, just like the (usual) derivative
from real analysis, satisfies the product rule (pq)′ = p′q + pq′.

Even though B =

(
2 4
−1 −3

)
does not (seem to) have a good characteristic polynomial to simplify p(B),

the same approach can also yield a quick result: p(t) = q(t)fB(t) + 312t+ 2 · 312.

3. Let T ∈ L(V ) be a linear map on a finite dimensional vector space V over scalar field F , and r = rank(T ).
Show that there exists a polynomial p ∈ Pr+1(F ) such that p(T ) = 0.

Solution: Let R = R ( T ) ⊆ V . It is already shown that R is T -invariant, so we may consider the
restriction TR of T on R.
By Cayley–Hamilton theorem, there exists a polynomial pR ∈ P(F ) of degree deg(pR) = r such that
pR(TR) = 0.
Consider the polynomial q(X) = pR(X)X ∈ P(F ) which is of degree deg(q) = deg(pR)+1 = r+1. Since
for each v ∈ V , Tv ∈ R, we have T kTv = T k

RTv for all k ≥ 0, and so by induction p(T )Tv = p(TR)Tv
for all polynomials p ∈ P(F ).
This implies that q(T )v = pR(T )Tv = pR(TR)Tv = 0 for all v ∈ V , so q(T ) = 0.

4. Let V be a nontrivial finite dimensional vector space over complex number, and T,U ∈ L(V ) be such that
TU = UT . Show that there exists a nonzero vector in V that is an eigenvector to both T,U .

Solution: Since V is nontrivial and finite dimensional, by the fundamental theorem of algebra, T has
an eigenvalue λ ∈ F . Let v ∈ V be an associated eigenvector, so v ̸= 0 and Tv = λv.
Then TUv = UTv = λUv, so Uv ∈ Eλ(T ). By induction, Unv ∈ Eλ(T ) for all n ≥ 0, so the U -cyclic
subspace K = Span( { Unv : n ≥ 0 } ) is a subspace of Eλ(T ).
By definition, K is U -invariant, so we may consider the restriction UK of U on K.
Since v ∈ K, K is nontrivial. By the fundamental theorem of algebra, UK has an eigenvalue µ.
This implies that there exists a nonzero w ∈ K ⊆ Eλ that is an eigenvector of UK , so an eigenvalue of U .
As w ∈ Eλ(T ) and is nonzero, w is also an eigenvector of T (with eigenvalue λ).
So T,U has a common eigenvector.

Note

The idea of this approach is to exploit the fact that U must have an eigenvector in a nontrivial U -invariant
subspace, and construct such a subspace in an eigenspace of T .

We can consider T1, . . . , Tn ∈ L(V ) for some n ≥ 2 that are pairwise commuting TiTj = TjTi. By
repeating this argument, we can show that they must share some common eigenvector. The complex
field requirement can also be relaxed if we assume that the characteristic polynomials of T and U split.
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