
MATH2040A Week 7 Tutorial Notes

1 Eigenvalues and Eigenvectors

Let V be a vector space, and T ∈ L(V ). A nonzero vector v ∈ V is an eigenvector / characteristic vector if
Tv = λv for some λ ∈ F . λ is the associated eigenvalue.

Easy to see that

• λ ∈ F is an eigenvalue if and only if T − λId is not injective. If V is finite dimensional, this is equivalent to
T − λId not being invertible.

• if v is an eigenvector, then v spans a one-dimensional invariant subspace S = Span( { v } ): T (S) ⊆ S

The spectrum σ(T ) ⊆ F of a linear map T ∈ L(V ) is the set of scalars λ ∈ F such that T −λI is not invertible.
If V is finite dimensional, it is exactly the set of all eigenvalues of T .

In lecture, the following theorem is proven:

Theorem 1.1. If V is a finite dimensional vector space of dimension n, and λ ∈ F , T ∈ L(V ), then the following
are equivalent:

• λ is an eigenvalue of T

• λ is an eigenvalue of the matrix [T ]β in some/every ordered basis β of V

• λ is a root of the characteristic polynomial fT (t) = det([T ]β − tIn) for some/every ordered basis β of V

The characteristic polynomial fT (t) = det([T ]β − tIn) is a polynomial of degree n and leading coefficient
(−1)n. Using fundamental theorem of algebra on it implies that a linear map on a finite dimensional vector space
over complex numbers has exactly n eigenvalues (counted with multiplicity).

To find all eigenvalues and eigenvectors of a linear map on a finite dimensional space, typically you need to

1. compute the characteristic polynomial fT (t) = det([T ]α − tIn) in e.g. standard ordered basis, then solve for
all its roots, typically by factorizing it

2. for each eigenvalue λ, find a basis for N ( T − λId ), which can be done via working on the matrix represen-
tation [T ]α − λIn in e.g. standard ordered basis

As you can see, finding all eigenvalues and eigenvectors involves only basic (yet cumbersome) operations of

• computing determinant

• factorizing a polynomial

• finding a basis of null space of a matrix (e.g. RREF)

It is quite common to make mistakes in these steps, so my suggestion is to check if your results are correct after
each step:

• does the characteristic polynomial have the right degree and leading coefficient?

• are the eigenvalues you found actually roots of the characteristic polynomial?

• is the null space nontrivial?

• is the basis you found consisting of eigenvectors of the original map, associated with the eigenvalue you
have chosen to solve for?

If not, there is a mistake somewhere in your computation.
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2 Diagonalizability

If there is an (ordered) basis β of V that every element is an eigenvector of T , then T is diagonalizable. If V is
finite dimensional, it is easy to see that [T ]β is a diagonal matrix (with diagonal entries being the eigenvalues), a
canonical form that is easier to handle than a generic (dense) matrix.

The following theorem has been shown in lecture:

Theorem 2.1. If S ⊆ V is a (finite) set of eigenvectors each associated to a distinct eigenvalue, then S is linearly
independent.

So if a linear map has dim(V ) distinct eigenvalues, it is diagonalizable.
We will discuss more about diagonalizability in the next tutorial sessions.

3 Algebra of Linear Maps, and Polynomials

We know that L(V ) is a vector space with naturally defined addition and scalar multiplication:

• T + U is defined pointwise as (T + U)(v) = T (v) + U(v)

• aT is defined pointwise as (aT )(v) = a · T (v)

We also know that we can define a (noncommutative but associative) multiplication on L(V ) via composition:
TU is defined pointwise as (TU)(v) = T (U(v)). With product, we can define powers with nonnegative exponents:

• T 0 = Id

• Tn+1 = TnT

If a linear map T ∈ L(V ) is invertible, we can also define powers with negative exponents: T−1 is the inverse of
T , and T−n = (T−1)n.

It is easy to verify that all these operations combined satisfy most of the usual laws you would expect.
This means that given a polynomial p(X) =

∑
aiX

i ∈ P(F ) = F [X], we can define a linear map p(T ) =∑
aiT

i. Informally, this is “evaluating the polynomial at the linear map”.
With simple computations, it is easy to see the following properties:

• if Tv = λv, then Tnv = λnv for n ≥ 0. If T is invertible, this also holds for n < 0 if v ̸= 0

• if p, q are polynomials, then (p+ q)(T ) = p(T ) + q(T ) and (pq)(T ) = p(T )q(T )

• if A is a matrix, then p(LA) = Lp(A) (with p(A) =
∑

aiA
i)

Combining these properties, it is easy to see the following result: if v is an eigenvector of T with associated
eigenvalue λ, then p(T )v = p(λ)v, so p(λ) is an eigenvalue of p(T ). (See also exercise Q4.)

4 Exercises

1. (Textbook Sec. 5.1 Q23)

Let V be a finite dimensional vector space and T ∈ L(V ) be diagonalizable with characteristic polynomial
p(t). Show that p(T ) = 0.

Solution: Since T is diagonalizable, there exists an eigenbasis β of V .
Let v ∈ β, and the associated eigenvalue be λ.
Then λ is a root of p, so p(λ) = 0.
By property of eigenvalue, we also have p(T )v = p(λ)v = 0.
Since v ∈ β is arbitrary, p(T ) = 0 on a basis β of V , thus p(T ) = 0.
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Note

You may already be aware of the Cayley–Hamilton theorem which is the focus of upcoming / current
lectures (the relevant lecture notes are posted online already). This question is a specialized version of
the theorem that does not need many setups, at the cost of a strong assumption (diagonalizability).

2. Let V be a finite dimensional vector space, and T,U ∈ L(V ). Show that σ(TU) = σ(UT ).

Solution: By symmetry, it suffices to show that σ(TU) ⊆ σ(UT ).

Let λ ∈ σ(TU) be nonzero. Then there exists nonzero eigenvector v ∈ V such that TUv = λv.
Since v ̸= 0 and λ ̸= 0, TUv = λv ̸= 0. In particular, Uv ̸= 0.
As UTUv = U(λv) = λUv and Uv ̸= 0, Uv is an eigenvector of UT with eigenvalue λ, so λ ∈ σ(UT ).

Suppose now 0 ∈ σ(TU). Then TU is not invertible.
Take an ordered basis β of V . Then [TU ]β is not an invertible matrix.
By the property of determinant (from MATH1030), 0 = det([TU ]β) = det([T ]β [U ]β) = det([U ]β [T ]β) =
det([UT ]β).
This implies that [UT ]β is also not invertible, and so UT is not invertible, 0 ∈ σ(UT ).

Thus σ(TU) ⊆ σ(UT ).

3. Let A ∈ Cn×n. For each j define Rj =
∑

k ̸=j | Ajk |, and Dj = { z ∈ C : | z −Ajj | ≤ Rj }.
Let λ ∈ C be an eigenvalue of A. Show that λ ∈ Dj for some j.

Solution: Let x ∈ Cn be an eigenvector associated to the eigenvalue λ.
Then x ̸= 0 and Ax = λx, or λxj = (Ax)j =

∑
k Ajkxk = Ajjxj +

∑
k ̸=j Ajkxk for each j.

Rearranging and using triangle inequality, we have | λ−Ajj | | xj | ≤
∑

k ̸=j | Ajk | | xk | for each j.
Let j0 ∈ { 1, . . . , n } be the index such that | xj0 | is maximal. Then | xk | ≤ | xj0 | for all k.
Since x ̸= 0, | xj0 | ≠ 0, for otherwise xk = 0 for all k and so x = 0, a contradiction.
Then | λ−Aj0,j0 | | xj0 | ≤

∑
k ̸=j0

| Aj0,k | | xk | ≤ (
∑

k ̸=j0
| Aj0,k |) | xj0 | = Rj0 | xj0 |, so | λ−Aj0,j0 | ≤

Rj0 .
This implies that λ ∈ Dj0 .

Note

This is Gershgorin circle theorem, which gives (computationally) quick estimates of locations of eigen-
values. There are a few generalizations, including Brauer oval theorem in which the regions are (Cassini)
ovals. See N. Higham’s blog post (and the references therein) for more detail.

4. Let V be a finite dimensional vector space over complex numbers, T ∈ L(V ), p(X) =
∑n

j=0 cjX
j ∈ P(C) be

a nonzero complex polynomial of degree n ≥ 1.
Let p(σ(T )) = { p(λ) | λ ∈ σ(T ) }. Show that p(σ(T )) = σ(p(T )).

(Hint: use the fundamental theorem of algebra)

Solution: Let λ ∈ σ(T ). Then there exists a nonzero vector v ∈ V such that Tv = λv.
So p(T )v = (

∑
cjT

j)(v) =
∑

cjT
j(v) =

∑
cjλ

jv = p(λ)v. This implies p(λ) is an eigenvalue of p(T ), so
p(λ) ∈ σ(p(T )). As λ is arbitrary, p(σ(T )) ⊆ σ(p(T )).

Let λ ∈ σ(p(T )). Then there exists a nonzero vector v ∈ V such that p(T )v = λv, so 0 = (p(T )−λId)v =
q(T )v on q(X) = p(X)− λ.
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https://mathworld.wolfram.com/GershgorinCircleTheorem.html
https://planetmath.org/brauersovalstheorem
https://web.archive.org/web/20240824182437/https://nhigham.com/2022/11/22/what-is-gershgorins-theorem/
https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra#Equivalent_statements


By the fundamental theorem of algebra, there exist c ∈ C \ {0} and z1, . . . , zn ∈ C such that q(X) =
c(X − zn) . . . (X − z1), so q(T ) = c(T − znId) . . . (T − z1Id).
Since q(T )v = 0 with v ̸= 0, q(T ) is not injective.
As composition of injective linear maps is injective, this means that (at least) one of T − zjId is not
injective. Let one such linear map be T − zkId. This implies that zk is an eigenvalue of T .
By assumption, zk is also a root of q(X) = p(X)− λ, so λ = p(zk) ∈ p(σ(T )).
As λ is arbitrary, σ(p(T )) ⊆ p(σ(T )).

Therefore, p(σ(T )) = σ(p(T )).

Note

Instead of considering composition of injective linear maps, we can also consider the vectors v0 = v,
vj = (T −zjId)vj−1 for j ∈ { 1, . . . , n }. Since vn = c−1q(T )v = 0 and v0 ̸= 0, there must be one minimal
k ∈ { 1, . . . , n } such that vk−1 ̸= 0 but (T − zkId)vk−1 = 0, which also implies that zk is an eigenvalue
of T .

This is (a simple version of) spectral mapping theorem (for polynomials), an interesting theorem in
functional calculus. The use of fundamental theorem of algebra is critical: consider the real vector space

R2 and A =

(
0 −1
1 0

)
∈ R2×2, p(X) = X2 + 1 ∈ P(R). It is easy to see that

• LA has no (real) eigenvalue, so the (real) spectrum is ∅

• p(LA) = Lp(A) = 02×2 and so has (real) spectrum {0}

which implies that p(σ(LA)) = ∅ ⫋ {0} = σ(p(LA))
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