
MATH2040A Week 6 Tutorial Notes

1 Change of Coordinates

1.1 Review

Recall that on two ordered bases β = { v1, . . . , vn } , γ = { w1, . . . , wm } of finite dimensional vectors spaces V,W
respectively (with n = dim(V ) and m = dim(W )), we have the representation maps [·]β on vectors and [·]γβ on
linear maps:

• for v ∈ V , [v]β ∈ Fn is a column vector that is formed by the linear combination v =
∑

([v]β)ivi. Similar
for γ and W

• for T ∈ L(V,W ), [T ]γβ ∈ Fm×n is a matrix that is formed by horizontally stacking the column vectors

[T (vj)]γ together, or equivalently by the relation T (vj) =
∑

i([T ]
γ
β)ijwi

and they satisfy

• [Tv]γ = [T ]γβ [v]β

• [TU ]γα = [T ]γβ [U ]βα

• T is invertible if and only if [T ]γβ is invertible, in which case [T−1]βγ = ([T ]γβ)
−1

The representations under different choices of bases are related by the change of coordinate matrices:

Definition 1.1. On two ordered bases β1, β2 of the same vector space, [Id]β2

β1
is the change of coordinate matrix

from β1-coordinate to β2-coordinate.

Using the properties we have

[v]β2
= [Id]β2

β1
[v]β1

[T ]γ2

β2
= [IdW ]γ2

γ1
[T ]γ1

β1

(
[IdV ]

β2

β1

)−1

[Id]β1

β2
=

(
[Id]β2

β1

)−1

If we want to find the change of coordinate matrix [Id]γβ for given ordered bases β, γ, we can

• for each vj ∈ β, directly decompose T (vj) =
∑

cijwi as a linearly combination of γ = { w1, . . . , wn }. The
change of coordinate matrix is then formed by collecting the coefficients ([Id]γβ)ij = cij

• find another ordered bases α, typically some standard basis1, and compute the change of coordinate matrices
[Id]αβ and [Id]αγ . The change of coordinate matrix A = [Id]γβ is then the matrix that solves [Id]αγ A = [Id]αβ

(which can be solved with techniques from MATH1030, e.g. RREF), or more explicitly A =
(
[Id]αγ

)−1
[Id]αβ

One reason to use standard basis is that the change of coordinate matrix is usually easy to find, e.g. on an

ordered basis β =



c11
c21
...

cn1

 , . . . ,


c1n
c2n
...

cnn


 of Fn, the change of coordinate matrix [Id]αβ to standard ordered

1For example, { e1, . . . , en } for Fn, or { 1, x, . . . , xn } for Pn(F ).
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basis α = { e1, . . . , en } is just formed by collecting all entries into a matrix [Id]αβ =


c11 c12 . . . cn1
c21 . . .
...

c1n . . . cnn

, at

the cost of the (potentially) more complicated [Id]βα =
(
[Id]αβ

)−1

.

Similarly, if we want to find the matrix representation of a linear map T ∈ L(V ) with respect to some ordered
basis β, we can

• for vj ∈ β, directly decompose each of T (vj) =
∑

i cijvi as a linear combination of β. The matrix represen-
tation [T ]β is the formed by collecting the coefficients ([T ]β)ij = cij

• find another ordered basis α on which the matrix representation [T ]α is easier to find, then compute the
change of coordinate matrices [Id]βα, [Id]

α
β . The matrix representation [T ]β is then [T ]β = [Id]βα[T ]α[Id]

α
β

In many cases, finding a basis α in which [T ]α has certain pattern (in canonical form) would give insights on how
the linear map works, and (sometimes) ease the cost of computations.

1.2 Matrix Relations

Definition 1.2. Two matrices A,B ∈ Fn×n are similar if there exists an invertible matrix Q ∈ Fn×n such that
A = QBQ−1.

Definition 1.3. Two matrices A,B ∈ Fm×n are equivalent if there exist invertible matrices P ∈ Fm×m and
Q ∈ Fn×n such that A = PBQ−1.

Obviously, if β, γ are two ordered bases of V and T ∈ L(V ), [T ]β and [T ]γ must be similar. A similar statement
holds for matrix equivalence as well. In exercise Q3 we will show the converse of this, that is two matrices are
equivalent only if they represent the same linear map under different ordered bases. You can show a similar
proposition on similar matrices as well.

2 Exercises

1. (Textbook Sec 2.5 Q13)

Let V be a finite-dimensional vector space over a field F , and let β = { x1, . . . , xn } be an ordered basis for
V . Let Q be an n× n invertible matrix with entries from F . Define

x′
j =

n∑
i=1

Qijxi for 1 ≤ j ≤ n,

and set β′ = { x′
1, . . . , x

′
n }. Prove that β′ is a basis for V and hence Q is the change of coordinate matrix

changing β′-coordinates to β-coordinates.

This shows in particular every invertible matrix is a change of coordinate matrix for some ordered bases.

Solution: To show that β′ is a basis for V , it suffices to show that it is linearly independent.
Let c1, . . . , cn ∈ F such that

∑
j cjx

′
j = 0.

By definition, 0 =
∑

j cjx
′
j =

∑
j

∑
i cjQijxi =

∑
i(
∑

j Qijcj)xi.
Since β is linearly independent, we must have

∑
j Qijcj = 0 for each i, or in matrix form

Q

c1
...
cn

 =

0
...
0


As Q is invertible, the only possibility is that c1 = . . . = cn = 0. This implies that β′ is linearly
independent.
Thus β′ is a basis for V .
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To find the change of coordinate matrix, we compute the matrix representation [Id]ββ′ .
For each x′

j ∈ β′, Id(x′
j) = x′

j =
∑

i Qijxi with xi ∈ β, which is a decomposition of Id(x′
j) in β =

{ x1, . . . , xn }.
So the change of coordinate matrix is [Id]ββ′ = Q.

Note

Here we are actually proving something quite strong: given any basis β and any invertible matrix Q, we
can always construct a new basis γ that the change of coordinate matrix [Id]βγ is exactly Q.

As we can see, although we transformed a basis β into a new basis β′ using Q, the change of coordinate

matrix from β-coordinates to β′-coordinates is [Id]β
′

β = Q−1, not Q. More precisely, the coordinate of

a vector v changes according to Q−1 as [v]β′ = [Id]β
′

β [v]β = Q−1[v]β , not according to Q.
This can be understood in the following way: when we transform the scale we use, the measurement
on the same object must also transform in an opposite way to counteract this change, for otherwise the
result would be inconsistent.
Since this changes against the transformation of basis, the components (of the coordinate of a vector)
are said to be contravariant. In some (usually old) references, this is (somewhat confusingly) shortened
to “vectors transform contravariantly”.

2. Let V be a finite dimensional vector space over F , and β = { v1, . . . , vn } be an ordered basis of V (with
n = dim(V )). Let Q ∈ Fn×n be invertible, and for each j let wj =

∑
i Qijvi.

From last question we know that γ = { w1, . . . , wn } is also an ordered basis of V with [IdV ]
β
γ = Q.

Let β∗ = { f1, . . . , fn } and γ∗ = { g1, . . . , gn } be the (ordered) dual bases corresponding to { v1, . . . , vn }
and { w1, . . . , wn } respectively. Find the change of coordinate matrix [IdV ∗ ]β

∗

γ∗ .

(Recall that the dual basis { f1, . . . , fn } corresponding to basis { v1, . . . , vn } is a set of linear maps fi ∈
V ∗ = L(V, F ) such that fi(vj) = δij for each i, j, which forms a basis of V ∗)

Solution: By definition, P = [IdV ∗ ]β
∗

γ∗ satisfies gj = IdV ∗(gj) =
∑

k Pkjfk. So

δij = gj(wi) =
∑
k

Pkjfk(wi)

=
∑
k

∑
l

PkjQlifk(vl)

=
∑
k

PkjQki

=
∑
k

(QT)ikPkj

or in matrix notation
In = QTP

This implies that [IdV ∗ ]β
∗

γ∗ = P =
(
QT

)−1
.

Note

It may be more natural to look at [IdV ∗ ]γ
∗

β∗ =
(
[IdV ∗ ]β

∗

γ∗

)−1

= QT.

If we write the coordinate of a vector in the dual space f ∈ L(V, F ) = V ∗ as a row vector instead
of a column vector, this indicates that the coordinate of a dual vector changes according to Q as
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[f ]γ∗ = [f ]β∗Q (with the matrix Q multiplied on the right instead of on the left). Since this changes
along with the transformation of basis, the components (of the coordinate) are said to be covariant.

Noting the reversal of left/right multiplication above, together with the transpose map t : L(V,W ) →
L(W ∗, V ∗) mentioned in the last tutorial session, we can see a reoccurring theme:

The operation of “taking dual” “reverses” the “order”

I am using quotes because the meanings of these terms are not well-defined (yet), although they can
be rigorously defined with some effort. Because of such reversal, this “dual operation” is also said to
be contravariant. For those who are eager to know more (about this “dual operation”), you may want
to check out the relevant sections about dual spaces in the reference books (both Friedberg et al. and
Axler), or if you are feeling particularly adventurous, Algebra by Mac Lane and Birkhoff.

3. (See also textbook Sec. 2.5 Q14)

Let V,W be finite dimensional vector spaces over F with dimension dim(V ) = n, dim(W ) = m, and B,C ∈
Fm×n. Show that B,C are equivalent if and only if there exist T ∈ L(V,W ) and ordered bases β, β′ of V

and γ, γ′ of W such that [T ]γβ = B, [T ]γ
′

β′ = C.

(In another word, two matrices of the same shape are equivalent if and only if they represent the same linear
map under different ordered bases)

Solution: Suppose B = [T ]γβ and C = [T ]γ
′

β′ for some T, β, γ, β,′ , γ′. Then B = [T ]γβ = [IdW ◦T ◦IdV ]γβ =

[IdW ]γγ′ [T ]
γ′

β′ [IdV ]
β′

β = ([IdW ]γγ′)C
(
[IdV ]

β
β′

)−1

, so B,C are equivalent.

Suppose B,C are equivalent.
Then there exists invertible P ∈ Fm×m, Q ∈ Fn×n such that B = PCQ−1.
Let β = { v1, . . . , vn }, γ = { w1, . . . , wm } be ordered bases of V and W respectively, and T ∈ L(V,W )
be the linear map that satisfies T (vj) =

∑
i Bijwi for all j.

By definition, [T ]γβ = B.

By Question 1, there exist ordered bases β′ of V and γ′ of W such that Q = [IdV ]
β
β′ is the change of

coordinate matrix from β′-coordinates to β-coordinates, and P = [IdW ]γγ′ is the change of coordinate
matrix from γ′-coordinates to γ-coordinates.

Then C = P−1BQ =
(
[IdW ]γγ′

)−1

[T ]γβ [IdV ]
β
β′ = [IdW ]γ

′

γ [T ]γβ [IdV ]
β
β′ = [T ]γ

′

β′ .

4. Show that for every matrix A ∈ Fm×n, there exists a unique r ∈ { 0, . . . ,min(m,n) } such that A is equivalent
to the matrix

Sr =

(
Ir×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)

Solution: Let r = rank(LA) ∈ { 0, . . . ,min(m,n) } be the (column) rank of A. We will show that A is
equivalent to Sr.

Let { y1, . . . , yr } be a basis of R ( LA ) ⊆ Fm, and extend it to a basis γ = { y1, . . . , ym } of Fm. For
i ≤ r let xi ∈ Fn such that Axi = yi.
Since { y1, . . . , yr } is linearly independent, so is { x1, . . . , xr }, and we can extend it to a basis β =
{ x1, . . . , xn } of Fn.

For i ≤ r, Txi = yi, so [Txi]γ = ei.
For i > r, as { y1, . . . , yr } = { Tx1, . . . , Txr } spans R ( LA ), we must have Txi = 0, so [Txi]γ = 0.

By definition, [T ]γβ =

(
Ir×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
= Sr, so on the standard bases αn, αm of Fn, Fm
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respectively, A = [LA]
αm
αn

= [IdFm ]αm
γ [LA]

γ
β [IdFn ]βαn

= [IdFm ]αm
γ Sr

(
[IdFn ]αn

β

)−1

which is equivalent to

Sr.

We now show the uniqueness of such r.
Let r′ ∈ { 0, . . . ,min(m,n) } such that A is also equivalent to Sr′ . Then Sr and Sr′ are equivalent.
By Question 3, there exist a linear map T ∈ L(V,W ) between finite dimensional vector spaces and

ordered bases β, β′ of V , γ, γ′ of W such that [T ]γβ = Sr and [T ]γ
′

β′ = Sr′ .
WLOG let elements of β, γ be β′ = { v1, . . . , vn } and γ = { w1, . . . , wm }.
By construction, for i ≤ r, [Tvi]γ = ei, so wi = Tvi ∈ R ( T ). As { w1, . . . , wr } is linearly independent,
rank(T ) ≥ r.
Similarly, for i > r, [Tvi]γ = 0, so Tvi = 0, vi ∈ N ( T ). Since { vr+1, . . . , vn } is linearly independent,
nullity(T ) ≥ n− r.
By dimension theorem, n = dim(V ) = rank(T ) + nullity(T ) ≥ r + (n − r) = n, so we must have
rank(T ) = r. Repeat the same argument on β′ and γ′ we obtain rank(T ) = r′. So r = r′.
Thus such r is unique.

Note

In another word, such Sr is a canonical form when we are concerning with matrix equivalence (as defined
above), and the rank r = rank(LA) = rank(A) uniquely determines the matrices that A is equivalent to.

In the proof of uniqueness, more canonically we can take V = Fn and W = Fm, and the corresponding
bases the standard ordered bases. This should make the constructions more explicit.
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