MATH2040A Week 4 Tutorial Notes

1 Linear Map

A vector space is a set that has some linear structure. A linear map (linear homomorphism) is a mapping between two vector spaces that preserves the linear structure¹. As a linear structure consists of

- a scalar field
- an addition operation
- a scalar multiplication

this means that for a linear map $T: V \to W$,

- V and W have the same scalar field²
- T(x+y) = T(x) + T(y)

•
$$T(ax) = aT(x)$$

as defined in the lecture.

As noted in the lecture, a linear map from a finite dimensional vector space is determined solely on its values on some basis: on a basis $\{v_1, \ldots, v_n\}$ on V, for each given set of vectors $\{w_1, \ldots, w_n\} \subseteq W$ there exists a unique linear map $T: V \to W$ such that $T(v_i) = w_i$ for each i. By extending a linearly independent to a basis, we can see that the similar conclusion holds on linearly independent set (with choice not necessarily unique).

1.1 Projection

(See textbook Sec 2.1 Q24–27)

Suppose $V = W_1 \oplus W_2$. A map $P = P_{W_1, W_2} : V \to V$ is a projection on W_1 along W_2 if for each decomposition $x = w_1 + w_2 \in V$ with $w_1 \in W_1$, $w_2 \in W_2$ we always have $P(x) = x_1$.

The properties of projection are (see textbook Sec 2.1 Q26 and exercise Q4):

- *P* is well-defined and is linear
- $\mathsf{R}(P) = W_1, \mathsf{N}(P) = W_2$

1.2 Relevant Subspaces

Two subspaces that are the most relevant to the study of linear maps are

- Null space / kernel: $N(T) = \{ v \in V \mid Tv = 0 \} \subseteq V$
- Range / image: $\mathsf{R}(T) = \{ Tv \mid v \in V \} \subseteq W$
- Invariant subspace (textbook Sec 2.1 Q28–32, assuming $T: V \to V$): $U \subseteq V$ such that $T(U) \subseteq U$

The basic properties are:

• N(T) and R(T) are subspaces (of their ambient spaces)

¹Hence, *homo-morphism*.

 $^{^{2}}$ This is more of a requirement on the spaces (so that the concept of linear map makes sense) than on the mapping per se.

- T (as a mapping between sets) is injective if and only if $N(T) = \{0\}$ is trivial
- if β spans $V, T(\beta) = \{ Tv \mid v \in \beta \}$ spans T(V)
- (lecture note 6, also textbook Sec 2.1 Q14) if β is linearly independent and T is injective, $T(\beta)$ is linearly independent
- (dimension theorem / rank-nullity theorem) assuming V is finite dimensional, $\dim(V) = \dim \mathsf{R}(T) + \dim \mathsf{N}(T) = \operatorname{rank}(T) + \operatorname{nullity}(T)$

Using dimension theorem, you can derive more results. For example, as R(T) is a subspace of W, (assuming W is finite dimensional) R(T) = W if they have the same dimension, which you can compute using the dimension theorem.

2 Matrix Representation and Coordinates

Given ordered bases $\beta = (v_1, \ldots, v_n), \gamma = (w_1, \ldots, w_m)$ of (finite dimensional) vector spaces V, W respectively³,

• the matrix representation / coordinate of a vector $v \in V$ (with respect to β) is the column vector $[x]_{\beta} = (a_i)_i$ such that

$$x = \sum a_i v_i$$

• the matrix representation of a linear map $T: V \to W$ (with respect to β, γ) is the dim $(W) \times \dim(V)$ matrix $[T]^{\gamma}_{\beta} = (c_{ij})_{ij}$ such that

$$T(v_j) = \sum c_{ij} w_i, \quad \forall j$$

As is shown in the lecture, these representations are linear (on given bases) and have the property that

$$[Tv]_{\gamma} = [T]_{\beta}^{\gamma}[v]_{\beta}$$
$$[TU]_{\alpha}^{\gamma} = [T]_{\beta}^{\gamma}[U]_{\alpha}^{\beta}$$

To compute such representations, the most straightforward way to do by the definitions:

- To compute $[x]_{\beta}$, decompose x as a linear combinations of β and write the coefficients as a column vector
- To compute $[T]^{\gamma}_{\beta}$, compute each of $[T(v_j)]_{\gamma}$ for $v_j \in \beta$, then stack the columns of coefficients horizontally

Note that the order of elements in the bases must be kept the same.

2.1 Map and Territory

Do not confuse a vector space with its associated coordinate space, a vector with its coordinate, and a linear map with its matrix representation.

It will soon be proved / is already proven in the lecture that, a *n*-dimensional vector space over scalar field F has the same linear behavior as F^n . Yet, a (finite dimensional) vector space is *not the same* as its coordinate space, in the same way "a map is *not* the territory": the coordinate space is just a (concrete) representation of the underlying (abstract) vector space in which the linear structure can be easily studied⁴. The precise representation of the (*intrinsic*) linear structure of the vector space via such coordinate space requires an artificial (*extrinsic*) choice of ordered basis, and switching from one choice to another requires some cares (see later lecture about change of coordinate).

 $^{^{3}}$ If we *abuse* notation, we can write these definitions in a more compact form:

 $x = \vec{\beta} \cdot [x]_{\beta}$ and $\overrightarrow{T\beta} = \vec{\gamma} [T]_{\beta}^{\gamma}$

with $\vec{\beta} = (v_1 \dots v_n), \vec{\gamma} = (w_1 \dots w_m), \text{ and } \overrightarrow{T\beta} = (Tv_1 \dots Tv_n)$ being "row vectors". Note that these notations does not really make sense and only serve as mnemonic devices.

⁴The preservation of linear structure is too good that the two spaces are (linearly) isomorphic.

3 Exercises

1. Let V, W be vector spaces with $W \neq \{0\}$ nontrivial, and $\{v_1, \ldots, v_n\} \subseteq V$ be a linearly dependent subset in V. Show that there exist $w_1, \ldots, w_n \in W$ such that no linear map $T \in L(V, W)$ satisfies $T(v_i) = w_i$ for all i.

Solution: Since $\{v_1, \ldots, v_n\}$ are linearly dependent, by textbook Sec 1.5 Q15 (homework 2), either $v_1 = 0$, or $v_{k+1} \in \text{Span}(\{v_1, \ldots, v_k\})$ for some k.

- If $v_1 = 0$, we can take $w_1 \in W$ to be a nonzero vector, and $w_2 = \ldots = w_n = 0$. Then for each $T \in L(V, W)$ we must have $T(v_1) = T0 = 0 \neq w_1$.
- Suppose $v_{k+1} \in \text{Span}(\{v_1, \ldots, v_k\})$ for some $k \ge 1$. We may assume that $v_{k+1} = \sum_{i=1}^k c_i v_i$ for some scalars c_1, \ldots, c_k .

Take $w_{k+1} \in W$ to be a nonzero vector, and $w_1 = \ldots = w_k = w_{k+2} = \ldots = w_n = 0$. Then for each $T \in L(V, W)$ with $T(v_i) = w_i = 0$ for $i \leq k$, we must have $T(v_{k+1}) = T(\sum_{i=1}^k c_i v_i) = \sum_{i=1}^k c_i T(v_i) = 0 \neq w_{k+1}$.

In both cases, there exist some $w_1, \ldots, w_n \in W$ such that no linear map $T \in L(V, W)$ maps v_i to w_i for each i.

Note

As we can see in the proof, we only need to specify w_1 (or w_1, \ldots, w_{k+1}), and the remaining vectors do not matter. Still, you should specify them explicitly for they are part of the construction.

2. Let V, W be vector spaces with V finite dimensional, and $T_1, T_2 \in L(V, W)$. Show that $\mathsf{R}(T_1) \subseteq \mathsf{R}(T_2)$ if and only if there exists $S \in L(V, V)$ such that $T_1 = T_2S$.

Idea: To show that a linear map with such property exists, we just need to construct one concretely, that is to construct a linear map that satisfies $T_1v = T_2Sv$ for each $v \in V$. Since $\mathsf{R}(T_1) \subseteq \mathsf{R}(T_2)$, we must have $T_1v = T_2u$ for some u, so we just need to map Sv = u for each $v \in V$. As V is finite dimensional, we only need this to hold on a basis of V.

Solution: Suppose $T_1 = T_2S$. Then for each $w \in \mathsf{R}(T_1)$, $w = T_1v$ for some $v \in V$, so $w = T_1v = T_2(Sv) \in \mathsf{R}(T_2)$. This implies that $\mathsf{R}(T_1) \subseteq \mathsf{R}(T_2)$.

Suppose $\mathsf{R}(T_1) \subseteq \mathsf{R}(T_2)$. Since V is finite dimensional, V has a basis $\{v_1, \ldots, v_n\}$. As $Tv_i \in \mathsf{R}(T_1) \subseteq \mathsf{R}(T_2)$ for each *i*, there exist $u_1, \ldots, u_n \in V$ such that $T_1v_i = T_2u_i$. Since $\{v_1, \ldots, v_n\}$ is a basis of V, there exists $S \in L(V, V)$ such that $Sv_i = u_i$ for each *i*. Then for each *i*, $(T_2S)(v_i) = T_2(Sv_i) = T_2u_i = T_1v_i$, so $T_1 = T_2S$ on a basis $\{v_1, \ldots, v_n\}$ of V. This implies that $T_1 = T_2S$ (on V).

Note

If $V = \{0\}$, T_1 and T_2 must be the zero map, and the only linear map $S \in L(V, V)$ is also the zero map on S. This is consistent with S constructed in the argument as the basis is an empty set and so we can take arbitrary S (although there is only one linear map).

3. Let V, W be vector space with W finite dimensional, and $T_1, T_2 \in L(V, W)$. Show that $\mathsf{N}(T_1) \subseteq \mathsf{N}(T_2)$ if and only if there exists $S \in L(W, W)$ such that $T_2 = ST_1$.

Idea: To show that a linear map with such property exists, we just need to construct one concretely, that is to construct a linear map that satisfies $T_2v = ST_1v$ for each $v \in V$. Since S takes a vector T_1v from $R(T_1)$, we just need S to have the correct images on a basis $\{T_1v_1, \ldots, T_1v_n\}$ of $R(T_1)$, that is, to have $S(T_1v_i) = T_2v_i$. All that remains is to check that this construction still works when $T_1v = 0$, which can be done by the kernel condition.

Conceptually this is the same idea as the last one.

Solution: Suppose $T_2 = ST_1$. Then for each $v \in \mathsf{N}(T_1)$, $T_1v = 0$, so $T_2v = ST_1v = S0 = 0$, $v \in \mathsf{N}(T_2)$. This implies that $\mathsf{N}(T_1) \subseteq \mathsf{N}(T_2)$.

Suppose $\mathbb{N}(T_1) \subseteq \mathbb{N}(T_2)$. Since W is finite dimensional, there exists a basis $\{T_1v_1, \ldots, T_1v_n\}$ of $\mathbb{R}(T_1)$ where $v_1, \ldots, v_n \in V$. Let $S \in L(W, W)$ be such that $S(T_1v_i) = T_2v_i$ for each i. Such S exists as $\{T_1v_1, \ldots, T_1v_n\} \subseteq W$ is linearly independent, and W is finite dimensional. We now show that $T_2 = ST_1$.

Let $v \in V$. Since $T_1 v \in \mathsf{R}(T_1)$, there exists c_1, \ldots, c_n such that $T_1 v = \sum c_i T_1 v_i = T_1(\sum c_i v_i)$, so $T_1(v - \sum c_i v_i) = 0$. This implies that $v - \sum c_i v_i \in \mathsf{N}(T_1) \subseteq \mathsf{N}(T_2)$, so $T_2(v - \sum c_i v_i) = 0$, $T_2 v = \sum c_i T_2 v_i = \sum c_i ST_1 v_i = ST_1(\sum c_i v_i) = ST_1 v$. As $T_2 v = ST_1 v$ for all $v \in V$, $T_2 = ST_1$.

Note

If $\mathsf{R}(T_1) = \{0\}$, $T_1 = 0$ with $\mathsf{N}(T_1) = V$, and so $T_2 = 0$ as well. This means that we can choose arbitrary $S \in L(W, W)$ and still have $T_2 = ST_1$. This is consistent with S constructed in the argument (which can be arbitrarily chosen as the basis is an empty set).

4. (Textbook Sec 2.1 Q26(a, b))

Suppose $T: V \to V$ is a projection on W_1 along W_2 , where $V = W_1 \oplus W_2$. Show that

- (a) T is linear
- (b) $W_1 = \mathsf{R}(T) = \{ v \in V \mid Tv = v \}$
- (c) $W_2 = N(T)$

Solution:

(a) Let $x, y \in V$, $a \in F$. As $V = W_1 \oplus W_2$, there exist unique $x_1, y_1 \in W_1$ and $x_2, y_2 \in W_2$ such that $x = x_1 + x_2$ and $y = y_1 + y_2$. Also, $x + y = (x_1 + x_2) + (y_1 + y_2) = (x_1 + y_1) + (x_2 + y_2)$ with $x_1 + y_1 \in W_1$ and $x_2 + y_2 \in W_2$, and $ax = a(x_1 + x_2) = (ax_1) + (ax_2)$ with $ax_1 \in W_1$, $ax_2 \in W_2$. By definition of projection, $T(x) = x_1$, $T(y) = y_1$, so $T(x + y) = x_1 + y_1 = T(x) + T(y)$ and $T(ax) = ax_1 = aT(x)$. These imply that T is linear.

(b) Let $S = \{ v \in V \mid Tv = v \} \subseteq V$.

Let $v \in W_1$. Then v = v + 0 with $v \in W_1$ and $0 \in W_2$, so Tv = v, $v \in S$. This implies that $W_1 \subseteq S$. Let $v \in S$. Then there exist unique $v_1 \in W_1$ and $v_2 \in W_2$ such that $v = v_1 + v_2$. By definition, $v = Tv = v_1 \in W_1$. This implies that $S \subseteq W_1$. Hence $S = W_1$. Since $S \subseteq \mathsf{R}(T)$, we have $W_1 \subseteq \mathsf{R}(T)$. By definition of projection, we also have $\mathsf{R}(T) \subseteq W_1$, so $W_1 = \mathsf{R}(T)$.

(c) Let $v \in W_2$. Then v = 0 + v where $0 \in W_1$ and $v \in W_2$. By definition of projection, Tv = 0, so $v \in \mathbb{N}(T)$. Let $v \in \mathbb{N}(T)$. Then there exist $v_1 \in W_1$ and $v_2 \in W_2$ such that $v = v_1 + v_2$. By assumption, $0 = Tv = v_1$, so $v = v_2 \in W_2$.

These imply that $N(T) = W_2$.

Note

By part (b), for each $v \in V$, $Tv \in W_1 = \{ x \in V \mid Tx = x \}$ and so $T^2v = T(Tv) = Tv$ (idempotent).