
MATH2040A Week 4 Tutorial Notes

1 Linear Map

A vector space is a set that has some linear structure. A linear map (linear homomorphism) is a mapping between
two vector spaces that preserves the linear structure1. As a linear structure consists of

• a scalar field

• an addition operation

• a scalar multiplication

this means that for a linear map T : V → W ,

• V and W have the same scalar field2

• T (x+ y) = T (x) + T (y)

• T (ax) = aT (x)

as defined in the lecture.
As noted in the lecture, a linear map from a finite dimensional vector space is determined solely on its values

on some basis: on a basis { v1, . . . , vn } on V , for each given set of vectors { w1, . . . , wn } ⊆ W there exists a
unique linear map T : V → W such that T (vi) = wi for each i. By extending a linearly independent to a basis,
we can see that the similar conclusion holds on linearly independent set (with choice not necessarily unique).

1.1 Projection

(See textbook Sec 2.1 Q24–27)
Suppose V = W1⊕W2. A map P = PW1,W2

: V → V is a projection on W1 along W2 if for each decomposition
x = w1 + w2 ∈ V with w1 ∈ W1, w2 ∈ W2 we always have P (x) = x1.

The properties of projection are (see textbook Sec 2.1 Q26 and exercise Q4):

• P is well-defined and is linear

• R ( P ) = W1, N ( P ) = W2

1.2 Relevant Subspaces

Two subspaces that are the most relevant to the study of linear maps are

• Null space / kernel: N ( T ) = { v ∈ V | Tv = 0 } ⊆ V

• Range / image: R ( T ) = { Tv | v ∈ V } ⊆ W

• Invariant subspace (textbook Sec 2.1 Q28–32, assuming T : V → V ): U ⊆ V such that T (U) ⊆ U

The basic properties are:

• N ( T ) and R ( T ) are subspaces (of their ambient spaces)

1Hence, homo-morphism.
2This is more of a requirement on the spaces (so that the concept of linear map makes sense) than on the mapping per se.
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• T (as a mapping between sets) is injective if and only if N ( T ) = {0} is trivial

• if β spans V , T (β) = { Tv | v ∈ β } spans T (V )

• (lecture note 6, also textbook Sec 2.1 Q14) if β is linearly independent and T is injective, T (β) is linearly
independent

• (dimension theorem / rank-nullity theorem) assuming V is finite dimensional, dim(V ) = dimR ( T ) +
dimN ( T ) = rank(T ) + nullity(T )

Using dimension theorem, you can derive more results. For example, as R ( T ) is a subspace of W , (assuming W
is finite dimensional) R ( T ) = W if they have the same dimension, which you can compute using the dimension
theorem.

2 Matrix Representation and Coordinates

Given ordered bases β = (v1, . . . , vn), γ = (w1, . . . , wm) of (finite dimensional) vector spaces V,W respectively3,

• the matrix representation / coordinate of a vector v ∈ V (with respect to β) is the column vector [x]β = (ai)i
such that

x =
∑

aivi

• the matrix representation of a linear map T : V → W (with respect to β, γ) is the dim(W )×dim(V ) matrix
[T ]γβ = (cij)ij such that

T (vj) =
∑

cijwi, ∀j

As is shown in the lecture, these representations are linear (on given bases) and have the property that

[Tv]γ = [T ]γβ [v]β

[TU ]γα = [T ]γβ [U ]βα

To compute such representations, the most straightforward way to do by the definitions:

• To compute [x]β , decompose x as a linear combinations of β and write the coefficients as a column vector

• To compute [T ]γβ , compute each of [T (vj)]γ for vj ∈ β, then stack the columns of coefficients horizontally

Note that the order of elements in the bases must be kept the same.

2.1 Map and Territory

Do not confuse a vector space with its associated coordinate space, a vector with its coordinate,
and a linear map with its matrix representation.

It will soon be proved / is already proven in the lecture that, a n-dimensional vector space over scalar field
F has the same linear behavior as Fn. Yet, a (finite dimensional) vector space is not the same as its coordinate
space, in the same way “a map is not the territory”: the coordinate space is just a (concrete) representation of the
underlying (abstract) vector space in which the linear structure can be easily studied4. The precise representation
of the (intrinsic) linear structure of the vector space via such coordinate space requires an artificial (extrinsic)
choice of ordered basis, and switching from one choice to another requires some cares (see later lecture about
change of coordinate).

3If we abuse notation, we can write these definitions in a more compact form:

x = β⃗ · [x]β and
−→
Tβ = γ⃗ [T ]γβ

with β⃗ =
(
v1 . . . vn

)
, γ⃗ =

(
w1 . . . wm

)
, and

−→
Tβ =

(
Tv1 . . . T vn

)
being “row vectors”. Note that these notations does

not really make sense and only serve as mnemonic devices.
4The preservation of linear structure is too good that the two spaces are (linearly) isomorphic.
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3 Exercises

1. Let V,W be vector spaces with W ̸= {0} nontrivial, and {v1, . . . , vn} ⊆ V be a linearly dependent subset in
V . Show that there exist w1, . . . , wn ∈ W such that no linear map T ∈ L(V,W ) satisfies T (vi) = wi for all i.

Solution: Since {v1, . . . , vn} are linearly dependent, by textbook Sec 1.5 Q15 (homework 2), either
v1 = 0, or vk+1 ∈ Span( { v1, . . . , vk } ) for some k.

• If v1 = 0, we can take w1 ∈ W to be a nonzero vector, and w2 = . . . = wn = 0. Then for each
T ∈ L(V,W ) we must have T (v1) = T0 = 0 ̸= w1.

• Suppose vk+1 ∈ Span( { v1, . . . , vk } ) for some k ≥ 1. We may assume that vk+1 =
∑k

i=1 civi for
some scalars c1, . . . , ck.
Take wk+1 ∈ W to be a nonzero vector, and w1 = . . . = wk = wk+2 = . . . = wn = 0. Then

for each T ∈ L(V,W ) with T (vi) = wi = 0 for i ≤ k, we must have T (vk+1) = T (
∑k

i=1 civi) =∑k
i=1 ciT (vi) = 0 ̸= wk+1.

In both cases, there exist some w1, . . . , wn ∈ W such that no linear map T ∈ L(V,W ) maps vi to wi for
each i.

Note

As we can see in the proof, we only need to specify w1 (or w1, . . . , wk+1), and the remaining vectors do
not matter. Still, you should specify them explicitly for they are part of the construction.

2. Let V,W be vector spaces with V finite dimensional, and T1, T2 ∈ L(V,W ). Show that R ( T1 ) ⊆ R ( T2 ) if
and only if there exists S ∈ L(V, V ) such that T1 = T2S.

Idea: To show that a linear map with such property exists, we just need to construct one concretely,
that is to construct a linear map that satisfies T1v = T2Sv for each v ∈ V . Since R ( T1 ) ⊆ R ( T2 ),
we must have T1v = T2u for some u, so we just need to map Sv = u for each v ∈ V . As V is finite
dimensional, we only need this to hold on a basis of V .

Solution: Suppose T1 = T2S. Then for each w ∈ R ( T1 ), w = T1v for some v ∈ V , so w = T1v =
T2(Sv) ∈ R ( T2 ). This implies that R ( T1 ) ⊆ R ( T2 ).

Suppose R ( T1 ) ⊆ R ( T2 ).
Since V is finite dimensional, V has a basis { v1, . . . , vn }. As Tvi ∈ R ( T1 ) ⊆ R ( T2 ) for each i, there
exist u1, . . . , un ∈ V such that T1vi = T2ui.
Since { v1, . . . , vn } is a basis of V , there exists S ∈ L(V, V ) such that Svi = ui for each i.
Then for each i, (T2S)(vi) = T2(Svi) = T2ui = T1vi, so T1 = T2S on a basis { v1, . . . , vn } of V .
This implies that T1 = T2S (on V ).

Note

If V = {0}, T1 and T2 must be the zero map, and the only linear map S ∈ L(V, V ) is also the zero map
on S. This is consistent with S constructed in the argument as the basis is an empty set and so we can
take arbitrary S (although there is only one linear map).

3. Let V,W be vector space with W finite dimensional, and T1, T2 ∈ L(V,W ). Show that N ( T1 ) ⊆ N ( T2 ) if
and only if there exists S ∈ L(W,W ) such that T2 = ST1.
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Idea: To show that a linear map with such property exists, we just need to construct one concretely,
that is to construct a linear map that satisfies T2v = ST1v for each v ∈ V . Since S takes a vector T1v
from R ( T1 ), we just need S to have the correct images on a basis { T1v1, . . . , T1vn } of R ( T1 ), that is,
to have S(T1vi) = T2vi. All that remains is to check that this construction still works when T1v = 0,
which can be done by the kernel condition.

Conceptually this is the same idea as the last one.

Solution: Suppose T2 = ST1. Then for each v ∈ N ( T1 ), T1v = 0, so T2v = ST1v = S0 = 0, v ∈ N ( T2 ).
This implies that N ( T1 ) ⊆ N ( T2 ).

Suppose N ( T1 ) ⊆ N ( T2 ).
Since W is finite dimensional, there exists a basis { T1v1, . . . , T1vn } of R ( T1 ) where v1, . . . , vn ∈ V .
Let S ∈ L(W,W ) be such that S(T1vi) = T2vi for each i. Such S exists as { T1v1, . . . , T1vn } ⊆ W is
linearly independent, and W is finite dimensional.

We now show that T2 = ST1.
Let v ∈ V . Since T1v ∈ R ( T1 ), there exists c1, . . . , cn such that T1v =

∑
ciT1vi = T1(

∑
civi), so

T1(v −
∑

civi) = 0.
This implies that v−

∑
civi ∈ N ( T1 ) ⊆ N ( T2 ), so T2(v−

∑
civi) = 0, T2v =

∑
ciT2vi =

∑
ciST1vi =

ST1(
∑

civi) = ST1v.
As T2v = ST1v for all v ∈ V , T2 = ST1.

Note

If R ( T1 ) = {0}, T1 = 0 with N ( T1 ) = V , and so T2 = 0 as well. This means that we can choose
arbitrary S ∈ L(W,W ) and still have T2 = ST1. This is consistent with S constructed in the argument
(which can be arbitrarily chosen as the basis is an empty set).

4. (Textbook Sec 2.1 Q26(a, b))

Suppose T : V → V is a projection on W1 along W2, where V = W1 ⊕W2. Show that

(a) T is linear

(b) W1 = R ( T ) = { v ∈ V | Tv = v }
(c) W2 = N ( T )

Solution:

(a) Let x, y ∈ V , a ∈ F .
As V = W1 ⊕ W2, there exist unique x1, y1 ∈ W1 and x2, y2 ∈ W2 such that x = x1 + x2 and
y = y1 + y2.
Also, x + y = (x1 + x2) + (y1 + y2) = (x1 + y1) + (x2 + y2) with x1 + y1 ∈ W1 and x2 + y2 ∈ W2,
and ax = a(x1 + x2) = (ax1) + (ax2) with ax1 ∈ W1, ax2 ∈ W2.
By definition of projection, T (x) = x1, T (y) = y1, so T (x + y) = x1 + y1 = T (x) + T (y) and
T (ax) = ax1 = aT (x).
These imply that T is linear.

(b) Let S = { v ∈ V | Tv = v } ⊆ V .

Let v ∈ W1. Then v = v+0 with v ∈ W1 and 0 ∈ W2, so Tv = v, v ∈ S. This implies that W1 ⊆ S.

Let v ∈ S. Then there exist unique v1 ∈ W1 and v2 ∈ W2 such that v = v1 + v2. By definition,
v = Tv = v1 ∈ W1. This implies that S ⊆ W1.
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Hence S = W1.

Since S ⊆ R ( T ), we have W1 ⊆ R ( T ).
By definition of projection, we also have R ( T ) ⊆ W1, so W1 = R ( T ).

(c) Let v ∈ W2. Then v = 0 + v where 0 ∈ W1 and v ∈ W2. By definition of projection, Tv = 0, so
v ∈ N ( T ).

Let v ∈ N ( T ). Then there exist v1 ∈ W1 and v2 ∈ W2 such that v = v1 + v2. By assumption,
0 = Tv = v1, so v = v2 ∈ W2.
These imply that N ( T ) = W2.

Note

By part (b), for each v ∈ V , Tv ∈ W1 = { x ∈ V | Tx = x } and so T 2v = T (Tv) = Tv (idempotent).
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