MATH2040A Week 12 Tutorial Notes

In this tutorial note, I will also denote the complex conjugate Z of a complex number z as z*.

1 Adjoint Operator

On an inner product space V, a map T* : V — V is an adjoint operator of T € L(V) if ( Tz, y ) = (x, T*y ) for
all z,y € V. As covered in lecture,

e if T* exists, it is unique and linear, and (T*)* =T

o if T* U* exist, then (TU)* = U*T*

e if T is invertible and T*, (T—1)* exist, then (T%)"' = (T—1)*

e (textbook Sec. 6.4 Q7) if W C V is a T-invariant subspace, then W+ is T*-invariant
and if V' is finite dimensional,

e cvery linear map T € L(V') has an/the adjoint

e if o is an orthonormal basis, [T%], = ([T]4)*, the conjugate transpose of the matrix [T,

o «: L(V)— L(V) is conjugate linear: (a1 + bU)* = o*T* + b*U*

Adjoint of T € L(V,W) can be defined in the same way, in which case T* € L(W, V) (if it exists)ﬂ
The existence of adjoint operator in finite dimensional spaces relies on the following important theorem:

Theorem 1.1 (Riesz Representation Theorem). If V is a finite dimensional inner product space, then for all
feV*=L(V,F), there exists a unique vy € V such that f(v) = (v, vy ) for allveV.

That is, for finite dimensional inner product space, every linear functional is induced by some vector via the
inner product pairing, and this gives a conjugate linear isomorphism between V* and V.
Here are some properties that are handy:

e if )\ is an eigenvalue of T', then \* is an eigenvalue of T

e (textbook Sec. 6.3 Q12) R(T* )" =N (T ), R(T )" =N(T*).
If V is finite dimensional, R(T*)=N(T )", R(T)=N(T*)"

e (textbook Sec. 6.3 Q13) N(T*T ) =N(T). If V is finite dimensional, rank(T*) = rank(T")
(that is, row rank equals column rank)
1.1 Computation of Adjoint Operator
Given a T € L(V) on a finite dimensional inner product space V', how to find T7*? One approach is to
1. take an orthonormal basis o = { e1,...,€, }
2. compute [T*] = ([T]a)*
3. revert back from matrix representation [T*], to a linear map T* on V

Of course, there are many approaches to do this, and many ways to simplify these computations.

1See textbook Sec. 6.3 Q15-17.



2 Normal and Self-adjoint Maps

For a linear map T' € L(V) with adjoint T*, T is normal if TT* = T*T, self-adjoint if T* =T.
The basic properties of normal operators are

o I T() || = || T*(v) | for all v
e if V is a complex space, T1 = %(T—i— ), Ty = %(T —T*), then T' Ty = ToT}
e if Tv = Av, then T%v = A*v. That is, Ex«(T™*) = Ex(T)
e if vy, vy are eigenvectors with distinct eigenvalues, then vy L v
The basic properties of self-adjoint operators are
e every eigenvalue of T" must be real
e if V is finite dimensional, characteristic polynomial of T splits. In particular, T" has an eigenvalue
e (textbook Sec. 6.4 Q11) ( Twv, v ) € R for all v € V. This is in fact equivalent to T being self-adjoint.

Theorem 2.1 (Schur Decomposition). Let V' be a finite dimensional inner product space, T € L(V) with a
characteristic polynomial that splits. Then there exists an orthonormal basis o of V' such that [T), is upper
triangular.

Theorem 2.2 (Spectral Theorem). Let V' be a finite dimensional inner product space, T € L(V).
e Suppose V is a complex vector space. Then T has an orthonormal eigenbasis if and only if T' is normal.
e Suppose V is a real vector space. Then T has an orthonormal eigenbasis if and only if T is self-adjoint.
In another word, T is normal (on complex space) / self-adjoint (on real space)lﬂ if and only if there exists an

orthonormal basis « such that [T], is diagonal.

2.1 Computation of Basis for Spectral Theorem

It is easy to find such an orthonormal eigenbasis:

1. Diagonalize T', as done in previous lectures.
You now have all eigenvalues Ay, ..., A, of T" and a basis §; for each eigenspace.

2. Apply Gram-Schmidt process on each of §; for orthonormal basis «; for each of the eigenspaces
3. Union all such orthonormal bases to get an orthonormal eigenbasis a = J v;

Computationally, this is the same as diagonalizing a lienar map with some extra works (for computing Gram—
Schmidt process).

3 Exercises

1. Let V be a finite dimensional inner product space with an ordered basis 8 = { v1,...,v, } not necessarily
orthonormal, and T € L(V).
Let G € F*™ be the Gram matrix of § defined by G, = ( v, v; ) for each j, k.
Find [T*]g with [T]g and the Gram matrix G of 3.

2For real normal linear map, an analog result exists, although the proof (generally) requires complezification of the space. See
Axler Sect. 9.B.
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Solution: Let o = { e1,...,e, } be an orthonormal basis of V.
Since a is orthonormal, [T™], = [TTj,, so on R = [Id]§, R is invertible and R, = ( v, €; ), so

(R*R)jkzzwj,ez><Uk,€z>=<Umz<vjael>€l>=<U/w vj ) = Gjk

and thus
[T*]p = M]3 [T*]a[1d]5
= [d]5([T])*[1d]5
= [1d]5 ([1d]§[T]5[1d]5)* [1d]3
= [d]5([Id]5)*([T]p)* ([d]g)*[1d]g
— R (R ([T]5) R°R
— (R*R)"M(T)s)"R'R
=G Y([T)p) G
Note

See also the note for tutorial 10 exercise 4.

2. Let V be a finite dimensional complex inner product space, and T' € L(V') be normal.
Let A€ C, v €V such that || v || =1 and || Tv — Av || < € for some € > 0.
Show that | A — X | < e for some eigenvalue A’ € C of T'.

Solution: By spectral theorem, there exists an orthonormal eigenbasis { ey, ..., e, } of T for V. Let the

associated eigenvalues be A\1,..., A\, € C.
Then v =3 (v, e; )ej,s0 1= v |>=](v,e;) > and Tv =3 (v, e; ) Aje;.

Suppose on the contrary that | A — A; | > € for each j. Then we have

> To—do P = | S hv e ) O = Nes | =1 0o ) PN AP =] (v, 65) [ =@

Contradiction arises. So | A — A; | < ¢ for some j.

Note

We can also show that there exists v’ € Ey such that || v — ¢’ || < Ce with some C' > 0 depending only
on (the distribution of the eigenvalues of) T'

3. Let V be an inner product space, and T' € L(V') with adjoint T*.
Suppose T*T = T?. Show that T is self-adjoint.

Solution: By direct computation, for v € V,

(T =T || = (T =T, (T —T"))

(T - )(T T*)v, v)

(T*T —(T*)? +TT*)v, v >
(

TT* — 211 v>

{
(
(
(

Page 3



so to show that T* = T, it suffices to show that TT* = (T*)?, or equivalently TT* = (TT*)* = ((T*)?)* =
T2, that is T(T — T*) = 0.

By assumption, T*T = T?, so T*T = (T*T)* = (T?)* = (T*)?, that is T*(T — T*) = 0.

Let v € V. Then on w = (T — T*)v, T*w = T*(T — T*)v = (T*T — (T*)?)v = 0.

This implies || Tw ||* = ( Tw, Tw ) = ( T*Tw, w ) = ( T*(T*w), w ) =0, s0 0 = Tw = T(T — T*)w.

As v is arbitrary, 7% = TT*.

Therefore, T* = T.

4. Let V be a finite dimensional inner product space, and T € L(V) be invertible. Show that there exist
Q, P € L(V) such that

e (Q is an isometry, that is || Qu || = || v || for all v € V

e P is self-adjoint and positive definite, that is ( Pv, v ) > 0 for all nonzero v € V

e T'=QP

Solution: Since T*T is self-adjoint, there exists an orthonormal eigenbasis a = { e1,...,e, } for T*T.
Let the associated eigenvalues be pi1, ..., in.

Then, for each j, uj = ( T*Te;, e; ) = ( Tej, Tej ) = || Te; || > 0.

Let P € L(V) be the linear map on V that Pe; = ,/ije; for each j.

By definition, P%e; = pje; = T*Te; for each j, so P? = T*T.

Since T is invertible, T*T is invertible. As V is finite dimensional, P is also invertible.
Let Q =TP~ L.

We now verify that @, P satisfy the requirements.
By definition, QP = TP~ 'P=T.

Since « is an orthonormal basis, P*e; = (\/fi;)*e; = /i e; = Pe; for each j, so P* = P.

Let v = )" ¢je; € V be nonzero with ¢y,...,¢, € F. Then ¢4,..., ¢, are not all zero.

Thus, ( Pv, v) = (> cj /i€, Y cker ) = > /i | ¢ > 0.

As v is arbitrary, P is positive definite.

By definition, QQ* = TP~Y(TP~1)* = T(P*P)"'T* = T(T*T)"'T* = 1d.

As V is finite dimensional, Q is invertible with Q' = Q*.

This implies that for each v € V, || Qu > = (Qu, Qv ) = (Q*Qu,v) = (v, v) = | v |* s0 | Qu | =
[ v

Hence, @ is an isometry.

Note

This is the polar decomposition of a linear map and can be seen as a high dimension analog of the following
property of complex number: for a nonzero complex number t € C\ {0}, t = gp where ¢ = tp~! € C has
the property that | gz | =| z | for all z € C, and p = v/z*z € C is a real number which is also positive.

By appropriately defining @, it is possible to extend this proposition to non-invertible maps, with P
being positive semidefinite ( Pv, v ) > 0. See Axler, Prop. 7.45, or textbook Theorem 6.28 for a version
on matrices.

Note that Qa = { Qes,...,Qe, } is still an orthonormal basis. This implies that there exists two
orthonormal bases «, @’ of V such that [T]2 is a diagonal matrix with nonnegative diagonal entries. This
is the singular value decomposition of the operator T'. See textbook Theorem 6.26, or Axler Prop. 7.51.
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