MATH2040A Week 12 Tutorial Notes

In this tutorial note, I will also denote the complex conjugate \overline{z} of a complex number z as z^* .

1 Adjoint Operator

On an inner product space V, a map $T^* : V \to V$ is an *adjoint operator* of $T \in L(V)$ if $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in V$. As covered in lecture,

- if T^* exists, it is unique and linear, and $(T^*)^* = T$
- if T^*, U^* exist, then $(TU)^* = U^*T^*$
- if T is invertible and $T^*, (T^{-1})^*$ exist, then $(T^*)^{-1} = (T^{-1})^*$
- (textbook Sec. 6.4 Q7) if $W \subseteq V$ is a T-invariant subspace, then W^{\perp} is T*-invariant

and if V is finite dimensional,

- every linear map $T \in L(V)$ has an/the adjoint
- if α is an orthonormal basis, $[T^*]_{\alpha} = ([T]_{\alpha})^*$, the conjugate transpose of the matrix $[T]_{\alpha}$
- $*: L(V) \to L(V)$ is conjugate linear: $(aT + bU)^* = a^*T^* + b^*U^*$

Adjoint of $T \in L(V, W)$ can be defined in the same way, in which case $T^* \in L(W, V)$ (if it exists)¹. The existence of adjoint operator in *finite dimensional* spaces relies on the following *important* theorem:

Theorem 1.1 (Riesz Representation Theorem). If V is a finite dimensional inner product space, then for all $f \in V^* = L(V, F)$, there exists a unique $v_f \in V$ such that $f(v) = \langle v, v_f \rangle$ for all $v \in V$.

That is, for *finite dimensional* inner product space, every linear functional is induced by some vector via the inner product pairing, and this gives a *conjugate linear* isomorphism between V^* and V.

Here are some properties that are handy:

- if λ is an eigenvalue of T, then λ^* is an eigenvalue of T^*
- (textbook Sec. 6.3 Q12) $\mathsf{R}(T^*)^{\perp} = \mathsf{N}(T), \mathsf{R}(T)^{\perp} = \mathsf{N}(T^*).$ If V is finite dimensional, $\mathsf{R}(T^*) = \mathsf{N}(T)^{\perp}, \mathsf{R}(T) = \mathsf{N}(T^*)^{\perp}$
- (textbook Sec. 6.3 Q13) $N(T^*T) = N(T)$. If V is finite dimensional, rank $(T^*) = rank(T)$ (that is, row rank equals column rank)

1.1 Computation of Adjoint Operator

Given a $T \in L(V)$ on a finite dimensional inner product space V, how to find T^* ? One approach is to

- 1. take an orthonormal basis $\alpha = \{ e_1, \ldots, e_n \}$
- 2. compute $[T^*]_{\alpha} = ([T]_{\alpha})^*$
- 3. revert back from matrix representation $[T^*]_{\alpha}$ to a linear map T^* on V

Of course, there are many approaches to do this, and many ways to simplify these computations.

 $^{^{1}}$ See textbook Sec. 6.3 Q15-17.

2 Normal and Self-adjoint Maps

For a linear map $T \in L(V)$ with adjoint T^* , T is normal if $TT^* = T^*T$, self-adjoint if $T^* = T$. The basic properties of normal operators are

- $|| T(v) || = || T^*(v) ||$ for all v
- if V is a complex space, $T_1 = \frac{1}{2}(T + T^*), T_2 = \frac{1}{2i}(T T^*)$, then $T_1T_2 = T_2T_1$
- if $Tv = \lambda v$, then $T^*v = \lambda^* v$. That is, $E_{\lambda^*}(T^*) = E_{\lambda}(T)$
- if v_1, v_2 are eigenvectors with distinct eigenvalues, then $v_1 \perp v_2$

The basic properties of self-adjoint operators are

- every eigenvalue of T must be real
- if V is finite dimensional, characteristic polynomial of T splits. In particular, T has an eigenvalue
- (textbook Sec. 6.4 Q11) $\langle Tv, v \rangle \in \mathbb{R}$ for all $v \in V$. This is in fact equivalent to T being self-adjoint.

Theorem 2.1 (Schur Decomposition). Let V be a finite dimensional inner product space, $T \in L(V)$ with a characteristic polynomial that splits. Then there exists an orthonormal basis α of V such that $[T]_{\alpha}$ is upper triangular.

Theorem 2.2 (Spectral Theorem). Let V be a finite dimensional inner product space, $T \in L(V)$.

- Suppose V is a complex vector space. Then T has an orthonormal eigenbasis if and only if T is normal.
- Suppose V is a real vector space. Then T has an orthonormal eigenbasis if and only if T is self-adjoint.

In another word, T is normal (on complex space) / self-adjoint (on real space)² if and only if there exists an orthonormal basis α such that $[T]_{\alpha}$ is diagonal.

2.1 Computation of Basis for Spectral Theorem

It is easy to find such an orthonormal eigenbasis:

- 1. Diagonalize T, as done in previous lectures. You now have all eigenvalues $\lambda_1, \ldots, \lambda_n$ of T and a basis β_i for each eigenspace.
- 2. Apply Gram–Schmidt process on each of β_j for orthonormal basis α_j for each of the eigenspaces
- 3. Union all such orthonormal bases to get an orthonormal eigenbasis $\alpha = \bigcup \alpha_i$

Computationally, this is the same as diagonalizing a lienar map with some extra works (for computing Gram– Schmidt process).

3 Exercises

1. Let V be a finite dimensional inner product space with an ordered basis $\beta = \{v_1, \ldots, v_n\}$ not necessarily orthonormal, and $T \in L(V)$.

Let $G \in F^{n \times n}$ be the Gram matrix of β defined by $G_{jk} = \langle v_k, v_j \rangle$ for each j, k. Find $[T^*]_{\beta}$ with $[T]_{\beta}$ and the Gram matrix G of β .

 $^{^{2}}$ For real *normal* linear map, an analog result exists, although the proof (generally) requires *complexification* of the space. See Axler Sect. 9.B.

Solution: Let $\alpha = \{ e_1, \ldots, e_n \}$ be an orthonormal basis of V. Since α is orthonormal, $[T^*]_{\alpha} = [T]^*_{\alpha}$, so on $R = [\mathrm{Id}]^{\alpha}_{\beta}$, R is invertible and $R_{jk} = \langle v_k, e_j \rangle$, so

$$(R^*R)_{jk} = \sum_{l} \overline{\langle v_j, e_l \rangle} \langle v_k, e_l \rangle = \left\langle v_k, \sum_{l} \langle v_j, e_l \rangle e_l \right\rangle = \langle v_k, v_j \rangle = G_{jk}$$

and thus

$$\begin{split} T^*]_{\beta} &= [\mathrm{Id}]^{\beta}_{\alpha}[T^*]_{\alpha}[\mathrm{Id}]^{\alpha}_{\beta} \\ &= [\mathrm{Id}]^{\beta}_{\alpha}([T]_{\alpha})^*[\mathrm{Id}]^{\alpha}_{\beta} \\ &= [\mathrm{Id}]^{\beta}_{\alpha}([\mathrm{Id}]^{\alpha}_{\beta}[T]_{\beta}[\mathrm{Id}]^{\beta}_{\alpha})^*[\mathrm{Id}]^{\alpha}_{\beta} \\ &= [\mathrm{Id}]^{\beta}_{\alpha}([\mathrm{Id}]^{\alpha}_{\alpha})^*([T]_{\beta})^*([\mathrm{Id}]^{\alpha}_{\beta})^*[\mathrm{Id}]^{\alpha}_{\beta} \\ &= R^{-1}(R^{-1})^*([T]_{\beta})^*R^*R \\ &= (R^*R)^{-1}([T]_{\beta})^*R^*R \\ &= G^{-1}([T]_{\beta})^*G \end{split}$$

Note

See also the note for tutorial 10 exercise 4.

2. Let V be a finite dimensional complex inner product space, and $T \in L(V)$ be normal. Let $\lambda \in \mathbb{C}$, $v \in V$ such that ||v|| = 1 and $||Tv - \lambda v|| < \epsilon$ for some $\epsilon > 0$. Show that $|\lambda - \lambda'| < \epsilon$ for some eigenvalue $\lambda' \in \mathbb{C}$ of T.

ľ

Solution: By spectral theorem, there exists an orthonormal eigenbasis $\{e_1, \ldots, e_n\}$ of T for V. Let the associated eigenvalues be $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$. Then $v = \sum \langle v, e_j \rangle e_j$, so $1 = ||v||^2 = \sum |\langle v, e_j \rangle|^2$ and $Tv = \sum \langle v, e_j \rangle \lambda_j e_j$. Suppose on the contrary that $|\lambda - \lambda_j| \ge \epsilon$ for each j. Then we have

$$\epsilon^{2} > \| Tv - \lambda v \|^{2} = \left\| \sum \langle v, e_{j} \rangle (\lambda_{j} - \lambda) e_{j} \right\|^{2} = \sum |\langle v, e_{j} \rangle|^{2} |\lambda_{j} - \lambda|^{2} \ge \sum |\langle v, e_{j} \rangle|^{2} \epsilon^{2} = \epsilon^{2}$$

Contradiction arises. So $|\lambda - \lambda_j| < \epsilon$ for some j.

Note

We can also show that there exists $v' \in E_{\lambda'}$ such that $||v - v'|| \leq C\epsilon$ with some C > 0 depending only on (the distribution of the eigenvalues of) T.

3. Let V be an inner product space, and $T \in L(V)$ with adjoint T^* . Suppose $T^*T = T^2$. Show that T is self-adjoint.

Solution: By direct computation, for $v \in V$,

$$\| (T - T^*)v \|^2 = \langle (T - T^*)v, (T - T^*)v \rangle$$

= $\langle (T^* - T)(T - T^*)v, v \rangle$
= $\langle (T^*T - T^2 - (T^*)^2 + TT^*)v, v \rangle$
= $\langle (TT^* - (T^*)^2)v, v \rangle$

so to show that $T^* = T$, it suffices to show that $TT^* = (T^*)^2$, or equivalently $TT^* = (TT^*)^* = ((T^*)^2)^* = T^2$, that is $T(T - T^*) = 0$. By assumption, $T^*T = T^2$, so $T^*T = (T^*T)^* = (T^2)^* = (T^*)^2$, that is $T^*(T - T^*) = 0$. Let $v \in V$. Then on $w = (T - T^*)v$, $T^*w = T^*(T - T^*)v = (T^*T - (T^*)^2)v = 0$. This implies $||Tw||^2 = \langle Tw, Tw \rangle = \langle T^*Tw, w \rangle = \langle T^*(T^*w), w \rangle = 0$, so $0 = Tw = T(T - T^*)v$. As v is arbitrary, $T^2 = TT^*$. Therefore, $T^* = T$.

- 4. Let V be a finite dimensional inner product space, and $T \in L(V)$ be invertible. Show that there exist $Q, P \in L(V)$ such that
 - Q is an isometry, that is || Qv || = || v || for all $v \in V$
 - P is self-adjoint and positive definite, that is $\langle Pv, v \rangle > 0$ for all nonzero $v \in V$
 - T = QP

Solution: Since T^*T is self-adjoint, there exists an orthonormal eigenbasis $\alpha = \{e_1, \ldots, e_n\}$ for T^*T . Let the associated eigenvalues be μ_1, \ldots, μ_n . Then, for each $j, \mu_j = \langle T^*Te_j, e_j \rangle = \langle Te_j, Te_j \rangle = ||Te_j||^2 > 0.$ Let $P \in L(V)$ be the linear map on V that $Pe_j = \sqrt{\mu_j}e_j$ for each j. By definition, $P^2 e_j = \mu_j e_j = T^* T e_j$ for each j, so $P^2 = T^* T$. Since T is invertible, T^*T is invertible. As V is finite dimensional, P is also invertible. Let $Q = TP^{-1}$. We now verify that Q, P satisfy the requirements. By definition, $QP = TP^{-1}P = T$. Since α is an orthonormal basis, $P^*e_j = (\sqrt{\mu_j})^*e_j = \sqrt{\mu_j}e_j = Pe_j$ for each j, so $P^* = P$. Let $v = \sum c_j e_j \in V$ be nonzero with $c_1, \ldots, c_n \in F$. Then c_1, \ldots, c_n are not all zero. Thus, $\langle Pv, v \rangle = \langle \sum c_j \sqrt{\mu_j} e_j, \sum c_k e_k \rangle = \sum \sqrt{\mu_j} |c_j|^2 > 0.$ As v is arbitrary, P is positive definite. By definition, $QQ^* = TP^{-1}(TP^{-1})^* = T(P^*P)^{-1}T^* = T(T^*T)^{-1}T^* = \text{Id}.$ As V is finite dimensional, Q is invertible with $Q^{-1} = Q^*$. This implies that for each $v \in V$, $\|Qv\|^2 = \langle Qv, Qv \rangle = \langle Q^*Qv, v \rangle = \langle v, v \rangle = \|v\|^2$, so $\|Qv\| = \langle Qv\|^2$ $\parallel v \parallel$. Hence, Q is an isometry.

Note

This is the *polar decomposition* of a linear map and can be seen as a high dimension analog of the following property of complex number: for a nonzero complex number $t \in \mathbb{C} \setminus \{0\}$, t = qp where $q = tp^{-1} \in \mathbb{C}$ has the property that |qz| = |z| for all $z \in \mathbb{C}$, and $p = \sqrt{z^*z} \in \mathbb{C}$ is a real number which is also positive.

By appropriately defining Q, it is possible to extend this proposition to non-invertible maps, with P being positive semidefinite $\langle Pv, v \rangle \ge 0$. See Axler, Prop. 7.45, or textbook Theorem 6.28 for a version on matrices.

Note that $Q\alpha = \{Qe_1, \ldots, Qe_n\}$ is still an orthonormal basis. This implies that there exists *two* orthonormal bases α, α' of V such that $[T]_{\alpha}^{\alpha'}$ is a diagonal matrix with nonnegative diagonal entries. This is the *singular value decomposition* of the operator T. See textbook Theorem 6.26, or Axler Prop. 7.51.