
MATH2040A Week 12 Tutorial Notes

In this tutorial note, I will also denote the complex conjugate z of a complex number z as z∗.

1 Adjoint Operator

On an inner product space V , a map T ∗ : V → V is an adjoint operator of T ∈ L(V ) if ⟨ Tx, y ⟩ = ⟨ x, T ∗y ⟩ for
all x, y ∈ V . As covered in lecture,

• if T ∗ exists, it is unique and linear, and (T ∗)∗ = T

• if T ∗, U∗ exist, then (TU)∗ = U∗T ∗

• if T is invertible and T ∗, (T−1)∗ exist, then (T ∗)
−1

= (T−1)∗

• (textbook Sec. 6.4 Q7) if W ⊆ V is a T -invariant subspace, then W⊥ is T ∗-invariant

and if V is finite dimensional,

• every linear map T ∈ L(V ) has an/the adjoint

• if α is an orthonormal basis, [T ∗]α = ([T ]α)
∗, the conjugate transpose of the matrix [T ]α

• ∗ : L(V ) → L(V ) is conjugate linear: (aT + bU)∗ = a∗T ∗ + b∗U∗

Adjoint of T ∈ L(V,W ) can be defined in the same way, in which case T ∗ ∈ L(W,V ) (if it exists)1.
The existence of adjoint operator in finite dimensional spaces relies on the following important theorem:

Theorem 1.1 (Riesz Representation Theorem). If V is a finite dimensional inner product space, then for all
f ∈ V ∗ = L(V, F ), there exists a unique vf ∈ V such that f(v) = ⟨ v, vf ⟩ for all v ∈ V .

That is, for finite dimensional inner product space, every linear functional is induced by some vector via the
inner product pairing, and this gives a conjugate linear isomorphism between V ∗ and V .

Here are some properties that are handy:

• if λ is an eigenvalue of T , then λ∗ is an eigenvalue of T ∗

• (textbook Sec. 6.3 Q12) R ( T ∗ )
⊥
= N ( T ), R ( T )

⊥
= N ( T ∗ ).

If V is finite dimensional, R ( T ∗ ) = N ( T )
⊥
, R ( T ) = N ( T ∗ )

⊥

• (textbook Sec. 6.3 Q13) N ( T ∗T ) = N ( T ). If V is finite dimensional, rank(T ∗) = rank(T )
(that is, row rank equals column rank)

1.1 Computation of Adjoint Operator

Given a T ∈ L(V ) on a finite dimensional inner product space V , how to find T ∗? One approach is to

1. take an orthonormal basis α = { e1, . . . , en }

2. compute [T ∗]α = ([T ]α)
∗

3. revert back from matrix representation [T ∗]α to a linear map T ∗ on V

Of course, there are many approaches to do this, and many ways to simplify these computations.

1See textbook Sec. 6.3 Q15-17.
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2 Normal and Self-adjoint Maps

For a linear map T ∈ L(V ) with adjoint T ∗, T is normal if TT ∗ = T ∗T , self-adjoint if T ∗ = T .
The basic properties of normal operators are

• ∥ T (v) ∥ = ∥ T ∗(v) ∥ for all v

• if V is a complex space, T1 = 1
2 (T + T ∗), T2 = 1

2i (T − T ∗), then T1T2 = T2T1

• if Tv = λv, then T ∗v = λ∗v. That is, Eλ∗(T ∗) = Eλ(T )

• if v1, v2 are eigenvectors with distinct eigenvalues, then v1 ⊥ v2

The basic properties of self-adjoint operators are

• every eigenvalue of T must be real

• if V is finite dimensional, characteristic polynomial of T splits. In particular, T has an eigenvalue

• (textbook Sec. 6.4 Q11) ⟨ Tv, v ⟩ ∈ R for all v ∈ V . This is in fact equivalent to T being self-adjoint.

Theorem 2.1 (Schur Decomposition). Let V be a finite dimensional inner product space, T ∈ L(V ) with a
characteristic polynomial that splits. Then there exists an orthonormal basis α of V such that [T ]α is upper
triangular.

Theorem 2.2 (Spectral Theorem). Let V be a finite dimensional inner product space, T ∈ L(V ).

• Suppose V is a complex vector space. Then T has an orthonormal eigenbasis if and only if T is normal.

• Suppose V is a real vector space. Then T has an orthonormal eigenbasis if and only if T is self-adjoint.

In another word, T is normal (on complex space) / self-adjoint (on real space)2 if and only if there exists an
orthonormal basis α such that [T ]α is diagonal.

2.1 Computation of Basis for Spectral Theorem

It is easy to find such an orthonormal eigenbasis:

1. Diagonalize T , as done in previous lectures.
You now have all eigenvalues λ1, . . . , λn of T and a basis βj for each eigenspace.

2. Apply Gram–Schmidt process on each of βj for orthonormal basis αj for each of the eigenspaces

3. Union all such orthonormal bases to get an orthonormal eigenbasis α =
⋃

αj

Computationally, this is the same as diagonalizing a lienar map with some extra works (for computing Gram–
Schmidt process).

3 Exercises

1. Let V be a finite dimensional inner product space with an ordered basis β = { v1, . . . , vn } not necessarily
orthonormal, and T ∈ L(V ).
Let G ∈ Fn×n be the Gram matrix of β defined by Gjk = ⟨ vk, vj ⟩ for each j, k.
Find [T ∗]β with [T ]β and the Gram matrix G of β.

2For real normal linear map, an analog result exists, although the proof (generally) requires complexification of the space. See
Axler Sect. 9.B.
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Solution: Let α = { e1, . . . , en } be an orthonormal basis of V .
Since α is orthonormal, [T ∗]α = [T ]∗α, so on R = [Id]αβ , R is invertible and Rjk = ⟨ vk, ej ⟩, so

(R∗R)jk =
∑
l

⟨ vj , el ⟩ ⟨ vk, el ⟩ =

〈
vk,

∑
l

⟨ vj , el ⟩ el

〉
= ⟨ vk, vj ⟩ = Gjk

and thus

[T ∗]β = [Id]βα[T
∗]α[Id]

α
β

= [Id]βα([T ]α)
∗[Id]αβ

= [Id]βα([Id]
α
β [T ]β [Id]

β
α)

∗[Id]αβ

= [Id]βα([Id]
β
α)

∗([T ]β)
∗([Id]αβ)

∗[Id]αβ

= R−1(R−1)∗([T ]β)
∗R∗R

= (R∗R)
−1

([T ]β)
∗R∗R

= G−1([T ]β)
∗G

Note

See also the note for tutorial 10 exercise 4.

2. Let V be a finite dimensional complex inner product space, and T ∈ L(V ) be normal.
Let λ ∈ C, v ∈ V such that ∥ v ∥ = 1 and ∥ Tv − λv ∥ < ϵ for some ϵ > 0.
Show that | λ− λ′ | < ϵ for some eigenvalue λ′ ∈ C of T .

Solution: By spectral theorem, there exists an orthonormal eigenbasis { e1, . . . , en } of T for V . Let the
associated eigenvalues be λ1, . . . , λn ∈ C.
Then v =

∑
⟨ v, ej ⟩ ej , so 1 = ∥ v ∥2 =

∑
| ⟨ v, ej ⟩ |2 and Tv =

∑
⟨ v, ej ⟩λjej .

Suppose on the contrary that | λ− λj | ≥ ϵ for each j. Then we have

ϵ2 > ∥ Tv − λv ∥2 =
∥∥∥ ∑

⟨ v, ej ⟩ (λj − λ)ej

∥∥∥2 =
∑

| ⟨ v, ej ⟩ |2 | λj − λ |2 ≥
∑

| ⟨ v, ej ⟩ |2 ϵ2 = ϵ2

Contradiction arises. So | λ− λj | < ϵ for some j.

Note

We can also show that there exists v′ ∈ Eλ′ such that ∥ v − v′ ∥ ≤ Cϵ with some C > 0 depending only
on (the distribution of the eigenvalues of) T .

3. Let V be an inner product space, and T ∈ L(V ) with adjoint T ∗.
Suppose T ∗T = T 2. Show that T is self-adjoint.

Solution: By direct computation, for v ∈ V ,

∥ (T − T ∗)v ∥2 = ⟨ (T − T ∗)v, (T − T ∗)v ⟩
= ⟨ (T ∗ − T )(T − T ∗)v, v ⟩
=

〈
(T ∗T − T 2 − (T ∗)2 + TT ∗)v, v

〉
=

〈
(TT ∗ − (T ∗)2)v, v

〉
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so to show that T ∗ = T , it suffices to show that TT ∗ = (T ∗)2, or equivalently TT ∗ = (TT ∗)∗ = ((T ∗)2)∗ =
T 2, that is T (T − T ∗) = 0.

By assumption, T ∗T = T 2, so T ∗T = (T ∗T )∗ = (T 2)∗ = (T ∗)2, that is T ∗(T − T ∗) = 0.
Let v ∈ V . Then on w = (T − T ∗)v, T ∗w = T ∗(T − T ∗)v = (T ∗T − (T ∗)2)v = 0.

This implies ∥ Tw ∥2 = ⟨ Tw, Tw ⟩ = ⟨ T ∗Tw, w ⟩ = ⟨ T ∗(T ∗w), w ⟩ = 0, so 0 = Tw = T (T − T ∗)v.
As v is arbitrary, T 2 = TT ∗.

Therefore, T ∗ = T .

4. Let V be a finite dimensional inner product space, and T ∈ L(V ) be invertible. Show that there exist
Q,P ∈ L(V ) such that

• Q is an isometry, that is ∥ Qv ∥ = ∥ v ∥ for all v ∈ V

• P is self-adjoint and positive definite, that is ⟨ Pv, v ⟩ > 0 for all nonzero v ∈ V

• T = QP

Solution: Since T ∗T is self-adjoint, there exists an orthonormal eigenbasis α = { e1, . . . , en } for T ∗T .
Let the associated eigenvalues be µ1, . . . , µn.
Then, for each j, µj = ⟨ T ∗Tej , ej ⟩ = ⟨ Tej , T ej ⟩ = ∥ Tej ∥2 > 0.

Let P ∈ L(V ) be the linear map on V that Pej =
√
µjej for each j.

By definition, P 2ej = µjej = T ∗Tej for each j, so P 2 = T ∗T .
Since T is invertible, T ∗T is invertible. As V is finite dimensional, P is also invertible.
Let Q = TP−1.

We now verify that Q,P satisfy the requirements.
By definition, QP = TP−1P = T .

Since α is an orthonormal basis, P ∗ej = (
√
µj)

∗ej =
√
µjej = Pej for each j, so P ∗ = P .

Let v =
∑

cjej ∈ V be nonzero with c1, . . . , cn ∈ F . Then c1, . . . , cn are not all zero.

Thus, ⟨ Pv, v ⟩ =
〈 ∑

cj
√
µjej ,

∑
ckek

〉
=

∑√
µj | cj |2 > 0.

As v is arbitrary, P is positive definite.

By definition, QQ∗ = TP−1(TP−1)∗ = T (P ∗P )
−1

T ∗ = T (T ∗T )
−1

T ∗ = Id.
As V is finite dimensional, Q is invertible with Q−1 = Q∗.
This implies that for each v ∈ V , ∥ Qv ∥2 = ⟨ Qv, Qv ⟩ = ⟨ Q∗Qv, v ⟩ = ⟨ v, v ⟩ = ∥ v ∥2, so ∥ Qv ∥ =
∥ v ∥.
Hence, Q is an isometry.

Note

This is the polar decomposition of a linear map and can be seen as a high dimension analog of the following
property of complex number: for a nonzero complex number t ∈ C \ {0}, t = qp where q = tp−1 ∈ C has
the property that | qz | = | z | for all z ∈ C, and p =

√
z∗z ∈ C is a real number which is also positive.

By appropriately defining Q, it is possible to extend this proposition to non-invertible maps, with P
being positive semidefinite ⟨ Pv, v ⟩ ≥ 0. See Axler, Prop. 7.45, or textbook Theorem 6.28 for a version
on matrices.

Note that Qα = { Qe1, . . . , Qen } is still an orthonormal basis. This implies that there exists two
orthonormal bases α, α′ of V such that [T ]α

′

α is a diagonal matrix with nonnegative diagonal entries. This
is the singular value decomposition of the operator T . See textbook Theorem 6.26, or Axler Prop. 7.51.
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