MATH2040A Week 11 Tutorial Notes

This tutorial session is mostly a review session.

1 Gram–Schmidt Process

Recall that the *Gram-Schmidt process* converts a list v_1, \ldots, v_n of linearly independent vectors into a list of orthogonal vectors w_1, \ldots, w_n with

• $w_1 = v_1, e_1 = w_1 / \parallel w_1 \parallel$

• for
$$j \ge 2$$
, $w_j = v_j - \sum_{k < j} \frac{\langle v_j, w_k \rangle}{\|w_k\|^2} w_k = v_j - \sum_{k < j} \langle v_j, e_k \rangle e_k, e_j = w_j / \|w_j\|$

The output of Gram–Schmidt process has the following properties, which are easy to show and sometimes handy:

- for each m, if v_1, \ldots, v_m are linearly independent, then so are w_1, \ldots, w_m , which are also orthogonal and Span({ v_1, \ldots, v_m }) = Span({ w_1, \ldots, w_m })
- $v_j w_j$ is the orthogonal projection of v_j onto Span({ v_1, \ldots, v_{j-1} })
- $v_j = w_j + \sum_{k < j} c_k w_k$ for some $c_1, \ldots, c_{j-1} \in F$. In particular, $\langle v_j, w_j \rangle = 1, \langle v_j, e_j \rangle = 1/||w_j|| > 0$
- for each j, on $\beta = \{v_1, \ldots, v_j\}, \gamma = \{w_1, \ldots, w_j\}, [\mathrm{Id}_{\mathrm{Span}(\beta)}]^{\gamma}_{\beta}$ is upper triangular and all diagonal entries are 1

2 Orthogonal Complement

Recall that the *orthogonal complement* of a set $S \subseteq V$ is the set $S^{\perp} = \{ v \in V \mid \langle v, u \rangle = 0, \forall u \in S \}$. The basic properties are:

- $S^{\perp} = \text{Span}(S)^{\perp}$ is a subspace
- if $S_1 \subseteq S_2, S_1^{\perp} \supseteq S_2^{\perp}$
- $(S^{\perp})^{\perp} \supseteq S$, and if U is a finite dimensional subspace, $(U^{\perp})^{\perp} = U$
- if $U_1, U_2 \subseteq V$ are subspaces, $(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$. If furthermore V is finite dimensional, $(U_1 \cap U_2)^{\perp} = U_1^{\perp} + U_2^{\perp}$
- if U is a finite dimensional subspace, $V = U \oplus U^{\perp}$. In particular, if V is also finite dimensional, $\dim(V) = \dim(U) + \dim(U^{\perp})$

3 Orthogonal Projection

Recall that for a finite dimensional¹ subspace $U \subseteq V$ with orthonormal basis $\alpha = \{e_1, \ldots, e_n\}$, the orthogonal projection P_U onto U is the linear map defined by $P_U(v) = \sum \langle v, e_j \rangle e_j$ for $v \in V$. The basic properties of P_U are

• P_U is a projection onto U along U^{\perp} . In particular, this means that

 $^{^{1}}$ It is possible to consider orthogonal projection for infinite dimensional subspace, although additional conditions on U are needed.

- P_U is idempotent: $P_U^2 = P_U$
- $\mathsf{R}(P_U) = U$ and $\mathsf{N}(P_U) = U^{\perp}$
- U is the set of fixed points of P_U : $U = \{ v \in V \mid P_U(v) = v \}$
- $|| P_U(v) || \le || v ||$
- for each $v \in V$, $P_U(v)$ is the unique minimizer of ||u v|| on U, that is, $P_U(x) \in U$ is the optimal approximation of v on U

4 Exercises

1. Equip \mathbb{R}^n with the usual inner product $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$. Suppose that $v_0 = (1, 1, \dots, 1), v_1 = (x_1, \dots, x_n) \in \mathbb{R}^n$ are linearly independent. Find the optimal approximation of $y = (y_1, \dots, y_n) \in \mathbb{R}^n$ in $U = \text{Span}(\{v_0, v_1\})$ and represent it with v_0 , $v_1, m_x = \frac{1}{n} \sum x_i, m_y = \frac{1}{n} \sum y_i, m_{xx} = \frac{1}{n} \sum x_i^2, m_{xy} = \frac{1}{n} \sum x_i y_i$.

Solution: We apply Gram–Schmidt process on v_0, v_1 :

•
$$w_0 = v_0$$
 with $||w_0||^2 = n$

• $w_1 = v_1 - \frac{\langle v_1, w_0 \rangle}{\|w_0\|^2} w_0 = (x_1, \dots, x_n) - \frac{\sum x_i}{n} (1, \dots, 1) = v_1 - m_x v_0$ with $\|w_1\|^2 = \sum (x_i - m_x)^2 = n(m_{xx} - m_x^2)$

so the orthogonal projection $P_U(y)$ of y is

$$P_{U}(y) = \frac{\langle y, w_{0} \rangle}{\|w_{0}\|^{2}} w_{0} + \frac{\langle y, w_{1} \rangle}{\|w_{1}\|^{2}} w_{1}$$

= $\frac{\sum y_{i}}{n} v_{0} + \frac{\sum x_{i}y_{i} - m_{x} \sum y_{i}}{n(m_{xx} - m_{x}^{2})} (v_{1} - m_{x}v_{0})$
= $m_{y}v_{0} + \frac{m_{xy} - m_{x}m_{y}}{m_{xx} - m_{x}^{2}} (v_{1} - m_{x}v_{0}) = \frac{m_{xx}m_{y} - m_{x}m_{xy}}{m_{xx} - m_{x}^{2}} v_{0} + \frac{m_{xy} - m_{x}m_{y}}{m_{xx} - m_{x}^{2}} v_{1}$

Note

This is the equation for the (simple linear) regression line which minimizes the square error $\sum (y_i - L(x_i))^2$ on data $(x_1, y_1), \ldots, (x_n, y_n)$.

Solution: Alternatively, we can use the result from the last tutorial session exercise. The Gram matrix of { v_0, v_1 } is

$$G = \begin{pmatrix} \langle v_0, v_0 \rangle & \langle v_1, v_0 \rangle \\ \langle v_0, v_1 \rangle & \langle v_1, v_1 \rangle \end{pmatrix} = \begin{pmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{pmatrix} = n \begin{pmatrix} 1 & m_x \\ m_x & m_{xx} \end{pmatrix}$$
so $G^{-1} = \frac{1}{n} \frac{1}{m_{xx} - m_x^2} \begin{pmatrix} m_{xx} & -m_x \\ -m_x & 1 \end{pmatrix}$

Also, $(\langle y, v_0 \rangle \langle y, v_1 \rangle)^{\mathsf{T}} = (\sum y_i \sum x_i y_i)^{\mathsf{T}} = n \begin{pmatrix} m_y & m_{xy} \end{pmatrix}^{\mathsf{T}}$. Thus, $G^{-1} (\langle y, v_0 \rangle \langle y, v_1 \rangle)^{\mathsf{T}} = \frac{1}{m_{xx} - m_x^2} \begin{pmatrix} m_{xx} m_y - m_x m_{xy} & m_{xy} - m_x m_y \end{pmatrix}^{\mathsf{T}}$. By the result from the last tutorial session exercise,

$$P_U(y) = \frac{m_{xx}m_y - m_x m_{xy}}{m_{xx} - m_x^2} v_0 + \frac{m_{xy} - m_x m_y}{m_{xx} - m_x^2} v_1$$

2. Let $U \subseteq V$ be a finite dimensional subspace of an inner product space V, and $x \in V$. Show that $y = P_U(x) \in U$ is the unique vector in U such that $\operatorname{Re} \langle x - y, u - y \rangle \leq 0$ for all $u \in U$, where $\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$ is the real part of the complex number $z \in \mathbb{C}$.

In another word, $y = P_U(x)$ is the only element in U such that x - y and u - y "do not form an acute angle" for any $u \in U$.

Solution: By property of orthogonal projection, $x - y = x - P_U(x) \in U^{\perp}$. Also, for all $u \in U$, $u - y \in U$. This implies that $\operatorname{Re} \langle x - y, u - y \rangle = \operatorname{Re}(0) = 0 \leq 0$.

Let $y' \in U \setminus \{y\}$. Then $y - y' \in U$ and is nonzero. This implies that $\langle x - y', y - y' \rangle = \langle x - y, y - y' \rangle + \langle y - y', y - y' \rangle = ||y - y'||^2 > 0$. In particular, Re $\langle x - y', y - y' \rangle > 0$.

Combined, $y = P_U(x)$ is the only element in U such that $\operatorname{Re} \langle x - y, u - y \rangle \leq 0$ for all $u \in U$.

Solution: Here is a proof that uses the characterization of orthogonal projection being the unique optimal approximation.

 $y = P_U(x)$ is the optimal approximation of x in U if and only if || y - x || < || u - x || for all $u \in U \setminus \{y\}$. As U is a subspace, this is equivalent to

$$\| y - x \|^{2} < \| \lambda u + (1 - \lambda)y - x \|^{2}$$

$$= \| y - x + \lambda(u - y) \|^{2}$$

$$= \| y - x \|^{2} - 2\lambda \operatorname{Re} \langle x - y, u - y \rangle + \lambda^{2} \| u - y \|^{2}$$
or equivalently, $\operatorname{Re} \langle x - y, u - y \rangle < \frac{\lambda}{2} \| u - y \|^{2}$

for all $u \in U \setminus \{y\}$ and $\lambda \in (0, 1]$.

As ||u-y|| > 0 for all $u \in U \setminus \{y\}$, this is equivalent to Re $\langle x - y, u - y \rangle \leq 0$ for all $u \in U \setminus \{y\}$. Trivially, Re $\langle x - y, u - y \rangle \leq 0$ holds on u = y as well, so this is equivalent to Re $\langle x - y, u - y \rangle \leq 0$ for all $u \in U$. Therefore, for $y \in U$, $y = P_U(x)$ if and only if Re $\langle x - y, u - y \rangle \leq 0$ for all $u \in U$.

Note

Using this proof, the same conclusion can be shown to hold true for a more general class of set U that is not necessarily a subspace, as long as U is still sufficiently "nice".

3. Let V be a finite dimensional inner product space with a basis $\beta = \{v_1, \ldots, v_n\}$ and corresponding Gram matrix $G \in F^{n \times n}$ as defined by $G_{jk} = \langle v_k, v_j \rangle$ for all $j, k, f \in V^* = L(V, F), U = \mathsf{N}(f)$. Represent $\{[v]_\beta \mid v \in U^\perp\}$ with $a = (\overline{f(v_1)} \ldots \overline{f(v_n)})^\mathsf{T} \in F^n$ and the Gram matrix G.

Solution: Suppose $a = 0_{F^n}$. Then f = 0 on a basis β of V and so f = 0 on V. This implies that $U = \mathbb{N}(f) = V$, $U^{\perp} = \{0\}$ and so $\{ [v]_{\beta} \mid v \in U^{\perp} \} = \{0_{F^n}\} = \text{Span}(\{ G^{-1}a \})$. Thus, in the following argument we may assume that $a \neq 0_{F^n}$.

Since $a \neq 0_{F^n}$, we must have $f \neq 0$, and so rank(f) = 1. By dimensional theorem and the property of orthogonal complement, $\dim(U^{\perp}) = \dim(V) - \dim(U) = \dim(V) - \operatorname{nullity}(f) = \operatorname{rank}(f) = 1$. To find U^{\perp} , it then suffices to find a nonzero vector in U^{\perp} .

Let $w = \sum (G^{-1}a)_j v_j \in V$. Since $a \neq 0_{F^n}$, $[w]_\beta = G^{-1}a \neq 0_{F^n}$, so $w \neq 0$. Let $u = \sum c_j v_j \in U$ with $c_1, \ldots, c_n \in F$. Then $\langle w, u \rangle = \sum (G^{-1}a)_k \overline{c_j} \langle v_k, v_j \rangle = \sum \overline{c_j} G_{jk} (G^{-1}a)_k = \sum \overline{c_j} a_j = \overline{\sum c_j} f(v_j) = \overline{f(u)} = 0.$ As $u \in U$ is arbitrary, $w \in U^{\perp}$

These imply that $U^{\perp} = \text{Span}(\{w\})$, and so $\{[v]_{\beta} \mid v \in U^{\perp}\} = \text{Span}(\{G^{-1}a\})$.

Note

w is constructed by noting the fact that $\langle w, u \rangle = [u]_{\beta}^{*} G[w]_{\beta}$.

Since $(U_1 \cap U_2)^{\perp} = U_1^{\perp} + U_2^{\perp}$, with $f_1, \ldots, f_m \in V^*$ we can show that $\left\{ [v]_{\beta} \mid v \in (\bigcap \mathsf{N}(f_k))^{\perp} \right\} = U_1^{\perp} + U_2^{\perp}$ $\mathsf{R}(G^{-1}A^*)$ with $A_{ik} = f_i(v_k)$.

4. Equip $\mathsf{P}(\mathbb{R})$ with inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)e^{x} dx$.

Suppose $p_0, p_1, \ldots \in \mathsf{P}(\mathbb{R})$ are orthogonal, and p_n has degree $\deg(p_n) = n$ and leading coefficient 1 for each n. Show that for $n \ge 1$, $p_{n+1} = (x - a_n)p_n - b_n p_{n-1}$ with $a_n = \frac{\langle x, p_n^2 \rangle}{\langle 1, p_n^2 \rangle}$, $b_n = \frac{\langle x^n, p_n \rangle}{\langle x^{n-1}, p_{n-1} \rangle}$.

Solution: For each n, since $p_0, \ldots, p_n \in \mathsf{P}_n(\mathbb{R})$ are $n+1 = \dim(\mathsf{P}_n(\mathbb{R}))$ vectors with distinct degree, they are linearly independent and so form a basis of $\mathsf{P}_n(\mathbb{R})$.

Let $n \ge 1$.

As deg $(xp_n) = n+1$, $xp_n \in \text{Span}(\{p_0, \dots, p_{n+1}\})$, so $xp_n = \sum_{i=0}^{n+1} c_{ni}p_i$ with $c_{ni} = \langle xp_n, p_i \rangle / || p_i ||^2$. Since for i < n-1, deg $(xp_i) = i+1 < n$, we must have $\langle xp_n, p_i \rangle = \int xp_n(x)p_i(x)w(x) = \langle p_n, xp_i \rangle = 0$, so $c_{ni} = 0$ for all such *i*.

Also, as p_{n-1}, p_n all have degree less than n+1, and xp_n, p_{n+1} have leading coefficient 1, we must have $c_{n,n+1} = 1.$

This implies that $xp_n = p_{n+1} + c_{n,n}p_n + c_{n,n-1}p_{n-1}$, so $p_{n+1} = (x - a_n)p_n - b_n p_{n-1}$ with $a_n = c_{nn} = c_{nn} = c_{nn} + c_{n,n}p_n + c_{n,n-1}p_{n-1}$, so $p_{n+1} = (x - a_n)p_n - b_n p_{n-1}$ with $a_n = c_{nn} = c_{nn} + c_{n,n-1}p_{n-1}$. $\langle xp_n, p_n \rangle / \parallel p_n \parallel^2 = \langle x, p_n^2 \rangle / \langle 1, p_n^2 \rangle$ and $b_n = c_{n,n-1} = \langle xp_n, p_{n-1} \rangle / \parallel p_{n-1} \parallel^2$.

It remains to show that $b_n = \langle x^n, p_n \rangle / \langle x^{n-1}, p_{n-1} \rangle$. We first show that $\langle x^m, p_m \rangle \neq 0$ for all $m \ge 0$, so that the expression makes sense. Since $x^m \in \text{Span}(\{p_0, \dots, p_m\})$, we have $x^m = \sum_{i=0}^m \frac{\langle x^m, p_i \rangle}{\|p_i\|^2} p_i = \frac{\langle x^m, p_m \rangle}{\|p_m\|^2} p_m + \sum_{i=0}^{m-1} \frac{\langle x^m, p_i \rangle}{\|p_i\|^2} p_i$. As $\deg(p_i) = i < m$ for all i < m, $\sum_{i=0}^{m-1} \frac{\langle x^m, p_i \rangle}{\|p_i\|^2} p_i$ has degree at most m-1. Since deg $(x^m) = m > m - 1$, this implies that $\frac{\langle x^m, p_m \rangle}{\|p_m\|^2} \neq 0$ and so $\langle x^m, p_m \rangle \neq 0$.

Taking inner product with x^{n-1} on the recurrence relation, we have

$$\left\langle x^{n-1}, p_{n+1} \right\rangle = \left\langle x^{n-1}, xp_n \right\rangle - a_n \left\langle x^{n-1}, p_n \right\rangle - b_n \left\langle x^{n-1}, p_{n-1} \right\rangle$$
$$= \left\langle x^n, p_n \right\rangle - a_n \left\langle x^{n-1}, p_n \right\rangle - b_n \left\langle x^{n-1}, p_{n-1} \right\rangle$$

Since deg $(x^{n-1}) = n-1$, we have $x^{n-1} \in \text{Span}(\{p_0, \dots, p_{n-1}\})$, and so by orthogonality $\langle x^{n-1}, p_n \rangle = 0$ $\langle x^{n-1}, p_{n+1} \rangle = 0.$ This implies that $\langle x^n, p_n \rangle = b_n \langle x^{n-1}, p_{n-1} \rangle$, so $b_n = \langle x^n, p_n \rangle / \langle x^{n-1}, p_{n-1} \rangle$.

Note

The first three polynomials are $p_0 = 1$, $p_1 \approx x - 0.3130$, $p_2 \approx x^2 - 0.2688x - 0.2897$.

Using the recurrence relation, we can also show that $b_n = \frac{\|p_n\|^2}{\|p_{n-1}\|^2} > 0$. Note that $a_n = \frac{\langle xp_n, p_n \rangle}{\|p_n\|^2}$, so for the iteration we only need to compute $|| p_n ||^2$ and $\langle xp_n, p_n \rangle$ for each p_n .

While the inner product is defined with a specific weight e^x , we only need to use the property $\langle fg, h \rangle =$ $\langle f, gh \rangle$ for polynomials f, g, h, so this result also holds for a general class of orthogonal polynomials (that are defined by inner product of the form $\langle f, g \rangle = \int f(x)g(x)w(x)$).