
MATH2040A Week 11 Tutorial Notes

This tutorial session is mostly a review session.

1 Gram–Schmidt Process

Recall that the Gram–Schmidt process converts a list v1, . . . , vn of linearly independent vectors into a list of
orthogonal vectors w1, . . . , wn with

• w1 = v1, e1 = w1/ ∥ w1 ∥

• for j ≥ 2, wj = vj −
∑

k<j
⟨vj , wk ⟩
∥wk ∥2 wk = vj −

∑
k<j ⟨ vj , ek ⟩ ek, ej = wj/ ∥ wj ∥

The output of Gram–Schmidt process has the following properties, which are easy to show and sometimes handy:

• for each m, if v1, . . . , vm are linearly independent, then so are w1, . . . , wm, which are also orthogonal and
Span( { v1, . . . , vm } ) = Span( { w1, . . . , wm } )

• vj − wj is the orthogonal projection of vj onto Span( { v1, . . . , vj−1 } )

• vj = wj +
∑

k<j ckwk for some c1, . . . , cj−1 ∈ F . In particular, ⟨ vj , wj ⟩ = 1, ⟨ vj , ej ⟩ = 1/ ∥ wj ∥ > 0

• for each j, on β = { v1, . . . , vj }, γ = { w1, . . . , wj }, [IdSpan(β )]
γ
β is upper triangular and all diagonal entries

are 1

2 Orthogonal Complement

Recall that the orthogonal complement of a set S ⊆ V is the set S⊥ = { v ∈ V | ⟨ v, u ⟩ = 0, ∀u ∈ S }. The basic
properties are:

• S⊥ = Span( S )
⊥

is a subspace

• if S1 ⊆ S2, S
⊥
1 ⊇ S⊥

2

• (S⊥)⊥ ⊇ S, and if U is a finite dimensional subspace, (U⊥)⊥ = U

• if U1, U2 ⊆ V are subspaces, (U1 + U2)
⊥ = U⊥

1 ∩ U⊥
2 . If furthermore V is finite dimensional, (U1 ∩ U2)

⊥ =
U⊥
1 + U⊥

2

• if U is a finite dimensional subspace, V = U ⊕ U⊥. In particular, if V is also finite dimensional, dim(V ) =
dim(U) + dim(U⊥)

3 Orthogonal Projection

Recall that for a finite dimensional1 subspace U ⊆ V with orthonormal basis α = { e1, . . . , en }, the orthogonal
projection PU onto U is the linear map defined by PU (v) =

∑
⟨ v, ej ⟩ ej for v ∈ V . The basic properties of PU

are

• PU is a projection onto U along U⊥. In particular, this means that

1It is possible to consider orthogonal projection for infinite dimensional subspace, although additional conditions on U are needed.

1



– PU is idempotent: P 2
U = PU

– R ( PU ) = U and N ( PU ) = U⊥

– U is the set of fixed points of PU : U = { v ∈ V | PU (v) = v }

• ∥ PU (v) ∥ ≤ ∥ v ∥

• for each v ∈ V , PU (v) is the unique minimizer of ∥ u − v ∥ on U , that is, PU (x) ∈ U is the optimal
approximation of v on U

4 Exercises

1. Equip Rn with the usual inner product ⟨ x, y ⟩ =
∑n

i=1 xiyi.
Suppose that v0 = (1, 1, . . . , 1), v1 = (x1, . . . , xn) ∈ Rn are linearly independent.
Find the optimal approximation of y = (y1, . . . , yn) ∈ Rn in U = Span( { v0, v1 } ) and represent it with v0,
v1, mx = 1

n

∑
xi, my = 1

n

∑
yi, mxx = 1

n

∑
x2
i , mxy = 1

n

∑
xiyi.

Solution: We apply Gram–Schmidt process on v0, v1:

• w0 = v0 with ∥ w0 ∥2 = n

• w1 = v1 − ⟨v1, w0 ⟩
∥w0 ∥2 w0 = (x1, . . . , xn) −

∑
xi

n (1, . . . , 1) = v1 −mxv0 with ∥ w1 ∥2 =
∑

(xi −mx)
2 =

n(mxx −m2
x)

so the orthogonal projection PU (y) of y is

PU (y) =
⟨ y, w0 ⟩
∥ w0 ∥2

w0 +
⟨ y, w1 ⟩
∥ w1 ∥2

w1

=

∑
yi
n

v0 +

∑
xiyi −mx

∑
yi

n(mxx −m2
x)

(v1 −mxv0)

= myv0 +
mxy −mxmy

mxx −m2
x

(v1 −mxv0) =
mxxmy −mxmxy

mxx −m2
x

v0 +
mxy −mxmy

mxx −m2
x

v1

Note

This is the equation for the (simple linear) regression line which minimizes the square error
∑

(yi−L(xi))
2

on data (x1, y1), . . . , (xn, yn).

Solution: Alternatively, we can use the result from the last tutorial session exercise.

The Gram matrix of { v0, v1 } is

G =

(
⟨ v0, v0 ⟩ ⟨ v1, v0 ⟩
⟨ v0, v1 ⟩ ⟨ v1, v1 ⟩

)
=

(
n

∑
xi∑

xi

∑
x2
i

)
= n

(
1 mx

mx mxx

)
so G−1 =

1

n

1

mxx −m2
x

(
mxx −mx

−mx 1

)
Also,

(
⟨ y, v0 ⟩ ⟨ y, v1 ⟩

)T
=

(∑
yi

∑
xiyi

)T
= n

(
my mxy

)T
.

Thus, G−1
(
⟨ y, v0 ⟩ ⟨ y, v1 ⟩

)T
= 1

mxx−m2
x

(
mxxmy −mxmxy mxy −mxmy

)T
.

By the result from the last tutorial session exercise,

PU (y) =
mxxmy −mxmxy

mxx −m2
x

v0 +
mxy −mxmy

mxx −m2
x

v1
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2. Let U ⊆ V be a finite dimensional subspace of an inner product space V , and x ∈ V .
Show that y = PU (x) ∈ U is the unique vector in U such that Re ⟨ x− y, u− y ⟩ ≤ 0 for all u ∈ U , where
Re(z) = 1

2 (z + z) is the real part of the complex number z ∈ C.
In another word, y = PU (x) is the only element in U such that x− y and u− y “do not form an acute angle”
for any u ∈ U .

Solution: By property of orthogonal projection, x−y = x−PU (x) ∈ U⊥. Also, for all u ∈ U , u−y ∈ U .
This implies that Re ⟨ x− y, u− y ⟩ = Re(0) = 0 ≤ 0.

Let y′ ∈ U \ {y}. Then y − y′ ∈ U and is nonzero.

This implies that ⟨ x− y′, y − y′ ⟩ = ⟨ x− y, y − y′ ⟩+ ⟨ y − y′, y − y′ ⟩ = ∥ y − y′ ∥2 > 0.
In particular, Re ⟨ x− y′, y − y′ ⟩ > 0.

Combined, y = PU (x) is the only element in U such that Re ⟨ x− y, u− y ⟩ ≤ 0 for all u ∈ U .

Solution: Here is a proof that uses the characterization of orthogonal projection being the unique optimal
approximation.

y = PU (x) is the optimal approximation of x in U if and only if ∥ y− x ∥ < ∥ u− x ∥ for all u ∈ U \ {y}.
As U is a subspace, this is equivalent to

∥ y − x ∥2 < ∥ λu+ (1− λ)y − x ∥2

= ∥ y − x+ λ(u− y) ∥2

= ∥ y − x ∥2 − 2λRe ⟨ x− y, u− y ⟩+ λ2 ∥ u− y ∥2

or equivalently, Re ⟨ x− y, u− y ⟩ < λ

2
∥ u− y ∥2

for all u ∈ U \ {y} and λ ∈ (0, 1].
As ∥ u− y ∥ > 0 for all u ∈ U \ {y}, this is equivalent to Re ⟨ x− y, u− y ⟩ ≤ 0 for all u ∈ U \ {y}.
Trivially, Re ⟨ x− y, u− y ⟩ ≤ 0 holds on u = y as well, so this is equivalent to Re ⟨ x− y, u− y ⟩ ≤ 0
for all u ∈ U .
Therefore, for y ∈ U , y = PU (x) if and only if Re ⟨ x− y, u− y ⟩ ≤ 0 for all u ∈ U .

Note

Using this proof, the same conclusion can be shown to hold true for a more general class of set U that is
not necessarily a subspace, as long as U is still sufficiently “nice”.

3. Let V be a finite dimensional inner product space with a basis β = { v1, . . . , vn } and corresponding Gram
matrix G ∈ Fn×n as defined by Gjk = ⟨ vk, vj ⟩ for all j, k, f ∈ V ∗ = L(V, F ), U = N ( f ).

Represent
{
[v]β

∣∣ v ∈ U⊥ }
with a =

(
f(v1) . . . f(vn)

)T ∈ Fn and the Gram matrix G.

Solution: Suppose a = 0Fn . Then f = 0 on a basis β of V and so f = 0 on V .
This implies that U = N ( f ) = V , U⊥ = {0} and so

{
[v]β

∣∣ v ∈ U⊥ }
= {0Fn} = Span

( {
G−1a

} )
.

Thus, in the following argument we may assume that a ̸= 0Fn .

Since a ̸= 0Fn , we must have f ̸= 0, and so rank(f) = 1. By dimensional theorem and the property of
orthogonal complement, dim(U⊥) = dim(V )− dim(U) = dim(V )− nullity(f) = rank(f) = 1.
To find U⊥, it then suffices to find a nonzero vector in U⊥.

Let w =
∑

(G−1a)jvj ∈ V . Since a ̸= 0Fn , [w]β = G−1a ̸= 0Fn , so w ̸= 0.
Let u =

∑
cjvj ∈ U with c1, . . . , cn ∈ F .
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Then ⟨ w, u ⟩ =
∑

(G−1a)kcj ⟨ vk, vj ⟩ =
∑

cjGjk(G
−1a)k =

∑
cjaj =

∑
cjf(vj) = f(u) = 0.

As u ∈ U is arbitrary, w ∈ U⊥.

These imply that U⊥ = Span( { w } ), and so
{
[v]β

∣∣ v ∈ U⊥ }
= Span

( {
G−1a

} )
.

Note

w is constructed by noting the fact that ⟨ w, u ⟩ = [u]∗βG[w]β .

Since (U1 ∩ U2)
⊥ = U⊥

1 + U⊥
2 , with f1, . . . , fm ∈ V ∗ we can show that

{
[v]β

∣∣∣ v ∈ (
⋂
N ( fk ) )

⊥
}

=

R
(
G−1A∗ )

with Ajk = fj(vk).

4. Equip P(R) with inner product ⟨ f, g ⟩ =
∫ 1

−1
f(x)g(x)ex dx.

Suppose p0, p1, . . . ∈ P(R) are orthogonal, and pn has degree deg(pn) = n and leading coefficient 1 for each n.

Show that for n ≥ 1, pn+1 = (x− an)pn − bnpn−1 with an =
⟨x, p2

n ⟩
⟨ 1, p2

n ⟩
, bn = ⟨xn, pn ⟩

⟨xn−1, pn−1 ⟩ .

Solution: For each n, since p0, . . . , pn ∈ Pn(R) are n + 1 = dim(Pn(R)) vectors with distinct degree,
they are linearly independent and so form a basis of Pn(R).
Let n ≥ 1.

As deg(xpn) = n+1, xpn ∈ Span( { p0, . . . , pn+1 } ), so xpn =
∑n+1

i=0 cnipi with cni = ⟨ xpn, pi ⟩ / ∥ pi ∥2.
Since for i < n−1, deg(xpi) = i+1 < n, we must have ⟨ xpn, pi ⟩ =

∫
xpn(x)pi(x)w(x) = ⟨ pn, xpi ⟩ = 0,

so cni = 0 for all such i.
Also, as pn−1, pn all have degree less than n+ 1, and xpn, pn+1 have leading coefficient 1, we must have
cn,n+1 = 1.
This implies that xpn = pn+1 + cn,npn + cn,n−1pn−1, so pn+1 = (x − an)pn − bnpn−1 with an = cnn =

⟨ xpn, pn ⟩ / ∥ pn ∥2 =
〈
x, p2n

〉
/
〈
1, p2n

〉
and bn = cn,n−1 = ⟨ xpn, pn−1 ⟩ / ∥ pn−1 ∥2.

It remains to show that bn = ⟨ xn, pn ⟩ /
〈
xn−1, pn−1

〉
.

We first show that ⟨ xm, pm ⟩ ≠ 0 for all m ≥ 0, so that the expression makes sense.

Since xm ∈ Span( { p0, . . . , pm } ), we have xm =
∑m

i=0
⟨xm, pi ⟩
∥pi ∥2 pi =

⟨xm, pm ⟩
∥pm ∥2 pm +

∑m−1
i=0

⟨xm, pi ⟩
∥pi ∥2 pi.

As deg(pi) = i < m for all i < m,
∑m−1

i=0
⟨xm, pi ⟩
∥pi ∥2 pi has degree at most m− 1.

Since deg(xm) = m > m− 1, this implies that ⟨xm, pm ⟩
∥pm ∥2 ̸= 0 and so ⟨ xm, pm ⟩ ≠ 0.

Taking inner product with xn−1 on the recurrence relation, we have〈
xn−1, pn+1

〉
=

〈
xn−1, xpn

〉
− an

〈
xn−1, pn

〉
− bn

〈
xn−1, pn−1

〉
= ⟨ xn, pn ⟩ − an

〈
xn−1, pn

〉
− bn

〈
xn−1, pn−1

〉
Since deg(xn−1) = n−1, we have xn−1 ∈ Span( { p0, . . . , pn−1 } ), and so by orthogonality

〈
xn−1, pn

〉
=〈

xn−1, pn+1

〉
= 0.

This implies that ⟨ xn, pn ⟩ = bn
〈
xn−1, pn−1

〉
, so bn = ⟨ xn, pn ⟩ /

〈
xn−1, pn−1

〉
.

Note

The first three polynomials are p0 = 1, p1 ≈ x− 0.3130, p2 ≈ x2 − 0.2688x− 0.2897.

Using the recurrence relation, we can also show that bn = ∥pn ∥2

∥pn−1 ∥2 > 0. Note that an = ⟨xpn, pn ⟩
∥pn ∥2 , so for

the iteration we only need to compute ∥ pn ∥2 and ⟨ xpn, pn ⟩ for each pn.

While the inner product is defined with a specific weight ex, we only need to use the property ⟨ fg, h ⟩ =
⟨ f, gh ⟩ for polynomials f, g, h, so this result also holds for a general class of orthogonal polynomials
(that are defined by inner product of the form ⟨ f, g ⟩ =

∫
f(x)g(x)w(x)).
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