MATH2040A Week 11 Tutorial Notes

This tutorial session is mostly a review session.

1 Gram—Schmidt Process

Recall that the Gram-Schmidt process converts a list vy,...,v, of linearly independent vectors into a list of
orthogonal vectors wy, ..., w, with

o wi =vy, €1 =wi/ || wy ||

o for j > 2wy =05 — Yoy T un = v = Xy (vgo en b & =wy/ || wy |

The output of Gram—Schmidt process has the following properties, which are easy to show and sometimes handy:

e for each m, if vq,...,v,, are linearly independent, then so are wy,...,w,,, which are also orthogonal and
Span( { vi,...,vm } ) =Span( { wi,...,wWm })

e v; —wj; is the orthogonal projection of v; onto Span( { vi,...,vj-1 })

o vj =w;+ Y, cpwy for some cy,...,¢;_1 € F. In particular, (v;, w; ) =1, (vj, e ) =1/ w; || >0

o foreach j,on f={v,...,v; },y={wi,...,w; }, [IdSpan(ﬁ)]g is upper triangular and all diagonal entries
are 1

2  Orthogonal Complement

Recall that the orthogonal complement of aset S C V is theset St ={v eV |(v,u)=0,Vu € S }. The basic
properties are:

e S = Span( S )" is a subspace
if 51 C s, Si- 2 S5

(SH)L 2 S, and if U is a finite dimensional subspace, (U+)+ =U

if Uy, Uy C V are subspaces, (U; + Us)* = Ui N Us-. If furthermore V is finite dimensional, (U; N Up)* =
Ui+ Us

if U is a finite dimensional subspace, V = U @ U~. In particular, if V is also finite dimensional, dim(V') =
dim(U) + dim(U+)

3 Orthogonal Projection

Recall that for a finite dimensionaﬂ subspace U C V with orthonormal basis & = { ey,..., e, }, the orthogonal
projection Py onto U is the linear map defined by Py(v) =3 (v, e; ) e; for v € V. The basic properties of Py
are

e Py is a projection onto U along U+. In particular, this means that

11t is possible to consider orthogonal projection for infinite dimensional subspace, although additional conditions on U are needed.



— Py is idempotent: P2 = Py
—R(Py)=UandN(Py)=U"
— U is the set of fixed points of Py: U={veV | Py(v)=v}

o [ Pu(w) [ <[ vl

e for each v € V, Py(v) is the unique minimizer of | u — v || on U, that is, Py(z) € U is the optimal
approximation of v on U

4 Exercises

1. Equip R" with the usual inner product ( z, y ) = > i | ;y;.
Suppose that vo = (1,1,...,1),v1 = (z1,...,2,) € R™ are linearly independent.
Find the optimal approximation of y = (y1,...,yn) € R™ in U = Span( { vg,v; } ) and represent it with vy,
V1, My = 23w, my =23y, Mgy = 232, mgy = 23 2y

Solution: We apply Gram—Schmidt process on vy, vy:

o wy = vy with || wg || =n

o wi = v — {tlug = (21, @) = EE(L 1) = 0 —mgeg with || w [P = (@ —me)? =

n(Myy —m?2)

so the orthogonal projection Py (y) of y is

P (y):<y7w0>w +<y7w1>
I wo || | ws |

721/1‘ Zl’vyl*mzzyi
= Vo —+ )
n n(Myy — m2)

wi

(Ul - macUO)

Mgy — MMMy MMy — MMy Mgy — MMy
=myvo + — (V1 — Mag) = 3 0 5 U1
Mgz — M2 Mgz — M2 Mgy — M2

Note

This is the equation for the (simple linear) regression line which minimizes the square error > (y; — L(z;))?

on data (z1,y1)s- -+, (Tn,Yn)-

Solution: Alternatively, we can use the result from the last tutorial session exercise.

The Gram matrix of { vg, vy } is

G((Uo,vo> <U17U0>)(n Zw)n(l mz)
(vo,v1) (w1, v1) Sap doa? My May
SO G*lzl 1 My —My

N Mgy — M2 \—Myg 1

Also, (< y,vo ) {(y,v1 >)T = (TZyZ szyz)T =n (my mzy)T.

T
ThU.S, G_l (< Y, Yo > <y, U1 >) = m (mzmmy — MgMyy Moy — mxmy) .

By the result from the last tutorial session exercise,

MgzpMy — MgMgy Mgy — Mgy

Py(y) = vo +

2 2 U1
My — M2 Mag — M2
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https://en.wikipedia.org/wiki/Simple_linear_regression#Expanded_formulas

2. Let U C V be a finite dimensional subspace of an inner product space V, and z € V.
Show that y = Py(z) € U is the unique vector in U such that Re(x —y, u—y ) < 0 for all u € U, where
Re(z) = 3(z + %) is the real part of the complex number z € C.

In another word, y = Py (x) is the only element in U such that x —y and u —y “do not form an acute angle”
for any u € U.

Solution: By property of orthogonal projection,  —y = . — Py (z) € UL, Also, forallu € U, u—y € U.
This implies that Re (z —y, u —y ) = Re(0) =0 < 0.

Let y' € U\ {y}. Then y —y’ € U and is nonzero.

This implies that (z -y, y—y' ) = (z =y, y—y' ) +{(y—v,y—y ) =lly—y |*>0.

In particular, Re{(z — ¢, y — 3" ) > 0.

Combined, y = Py(z) is the only element in U such that Re{(x —y, u—y ) <0 for all u € U.

Solution: Here is a proof that uses the characterization of orthogonal projection being the unique optimal
approximation.

y = Py(z) is the optimal approximation of x in U if and only if |y —z || < || u—z || for all w € U\ {y}.
As U is a subspace, this is equivalent to
ly = | <l du+(1-Ny-=|’
=ly—z+Au-y) |
=lly—z|* =22 Re(z—y,u—y)+ N[ u—y|

A
or equivalently, Re(z —y, u —y ) < 3 | w—y |

forall w € U\ {y} and X € (0,1].

As||u—y | >0 for all w € U\ {y}, this is equivalent to Re(z —y, u —y ) <0 for all u € U \ {y}.
Trivially, Re{x —y, u —y ) < 0 holds on u = y as well, so this is equivalent to Re (z —y, u—y ) <0
forall u e U.

Therefore, for y € U, y = Py(z) if and only if Re(z —y, u—y ) <0 for all u € U.

Note

Using this proof, the same conclusion can be shown to hold true for a more general class of set U that is
not necessarily a subspace, as long as U is still sufficiently “nice”.

3. Let V be a finite dimensional inner product space with a basis § = { v1,...,v, } and corresponding Gram
matrix G € F"*" as defined by G = (v, v; ) for all j,k, f e V* =L(V,F),U=N(f).
Represent { [v]g | v € U } with a = (f(v1) ... f(vn))T € F™ and the Gram matrix G.

Solution: Suppose a = 0pn. Then f =0 on a basis § of V and so f =0 on V.

This implies that U =N ( f ) =V, U+ = {0} and so { [v]s |v € U+ } = {0p»} = Span( { G~'a } ).
Thus, in the following argument we may assume that a # Opn.

Since a # Opn, we must have f # 0, and so rank(f) = 1. By dimensional theorem and the property of
orthogonal complement, dim(U+) = dim(V) — dim(U) = dim(V) — nullity(f) = rank(f) = 1.

To find U+, it then suffices to find a nonzero vector in U~.

Let w =Y (G7'a);v; € V. Since a # Opn, [w]g = G ta # 0pn, so w # 0.

Let u =73 cjv; € U with ¢y,...,¢, € F.
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Then (w, u ) =Y (G a)ie; (v, v; ) = D ¢Gj(G )y =Y Gaj; = c;flvy) = f(u) =0.
As u € U is arbitrary, w € U+,

These imply that U+ = Span( { w } ), and so { [v]s | v € U+ } =Span({G~'a }).

Note

w is constructed by noting the fact that (w, u ) = [u]3G[w]s.

Since (U; NUs)*+ = Uit + Ush, with fi,..., fr, € V* we can show that { [v]s ‘ ve (NON(f) )t } =
R ( G~ LA™ ) with Ajk = fj(vk).

4. Equip P(R) with inner product ( f, g ) = filf(x)g(x)ez dz.
Suppose pg, p1, - - - € P(R) are orthogonal, and p,, has degree deg(p,) = n and leading coefficient 1 for each n.

2 n
Show that for n > 1, Pn+1 = (‘T - an)pn — bypp—1 with a, = 291:7;);;7 by, = <z§i1’zn >1 >

Solution: For each n, since po,...,pn € Pr(R) are n + 1 = dim(P,(R)) vectors with distinct degree,
they are linearly independent and so form a basis of P, (R).

Let n > 1.

As deg(xpn) = n+1v Tpp € Span( {pOa <oy Pntl } )v S50 Tpp = Z;ﬂ+01 CniPi with Cni = < TPn, Pi >/|| Di H2

Since for i < n—1, deg(xp;) = i+1 < n, we must have ( zp,, p; ) = [ @p,(x)p;(z)w(x) = ( p,, xp; ) =0,

S0 ¢p; = 0 for all such 3.

Also, as p,—1, pn all have degree less than n + 1, and zp,, pr+1 have leading coefficient 1, we must have

Cnon+l = 1

This lmphes that TPn = Pn+y1 + CnmnPn + Cnn—1Pn—1, SO Pnt1 = ((E - an)pn - bnpnfl with a, = cpp =
2 2

<xpnapn>/||pn || :<xap% >/< 1ap121 > and bnzcmn—l = <xpn7pn—1 >/||pn—1 || .

It remains to show that b, = (", p, ) /{ "7, pu_1 ).

We first show that ( ™, p,, ) # 0 for all m > 0, so that the expression makes sense.

Since 2™ € Span( { po,...,pm } ), we have 2™ =" <ﬁp’ﬁ;>pl = <ﬁp7’np“"§ P+ oo ! <ﬁp’ﬁ’§>pl

As deg(p;) =i < m for all i < m, Zﬁ_l T‘p’ﬁ’; ) p; has degree at most m — 1.

Since deg(z™) = m > m — 1, this implies that % # 0 and so { 2™, py, ) # 0.

Taking inner product with ™' on the recurrence relation, we have

< xn717 Pn+1 > = < xnila TPn > — Qn < xn717 Pn > - bn< mn717 Pn—-1 >
= < xn7 pn > - an< xn—17 pn > - bn < l,n—17 pnfl >

Since deg(z" ') = n—1, we have 2" ~! € Span( { po,...,pn_1 } ), and so by orthogonality < " pn > =
< ‘,En—l’ Pn+1 > =0.

This implies that { 2™, p, ) = by, < 2N pn_q >, s0 b, = (2", pp >/< 2" pnq >

Note

The first three polynomials are pg = 1, p1 = = — 0.3130, p» ~ 22 — 0.2688z — 0.2897.

Using the recurrence relation, we can also show that b, % > 0. Note that a,, = %, so for

the iteration we only need to compute || p, ||* and { zp,, pn ) for each p,.

While the inner product is defined with a specific weight e®, we only need to use the property ( fg, h ) =
( f, gh') for polynomials f,g,h, so this result also holds for a general class of orthogonal polynomials
(that are defined by inner product of the form ( f, g ) = [ f(x (x)).
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