
MATH2040A Week 10 Tutorial Notes

1 Orthogonal Complement

Let V be an inner product space. The orthogonal complement S⊥ of a set S ⊆ V is the set of all vectors that are
orthogonal to each vector in S, that is, S⊥ = { v ∈ V | ∀w ∈ S, ⟨ v, w ⟩ = 0 }.

Basic properties of orthogonal complement are:

• S⊥ is always a subspace

• if U ⊆ V is a subspace, U ∩ U⊥ = {0}

• if U ⊆ V is a finite dimensional subspace, V = U ⊕ U⊥ (hence, complement)

• if S1 ⊆ S2, then S⊥
1 ⊇ S⊥

2 . In particular, S⊥ = Span( S )
⊥

• (S⊥)⊥ ⊇ S, and if U is a finite dimensional subspace, (U⊥)⊥ = U 1

In particular, if V is finite dimensional, dim(V ) = dim(U) + dim(U⊥). (Compare with dimension theorem)

1.1 Computation of Orthogonal Complement

Given a finite set of vectors S = { w1, . . . , wm } in a finite dimensional space V , how to find S⊥? One way to
compute its orthogonal complement is to

1. take a basis β = { v1, . . . , vn } of V

2. for a generic vector v =
∑

cjvj ∈ V , compute ⟨ v, wj ⟩ for each j. Each yields a linear equation ⟨ v, wj ⟩ = 0
on the coefficients c1, . . . , cn

3. solve the linear system of all m equations. U⊥ is then the space of vectors
∑

cjvj with these solutions as
the coefficients

Of course, there are many approaches to do this, and many ways to simplify these computations.

1.2 Optimal Approximation

Let U ⊆ V be a finite dimensional subspace, so V = U ⊕ U⊥. As noted in lecture, the following holds:

Theorem 1.1. Let v ∈ V with decomposition v = u + w according to the direct sum V = U ⊕ U⊥ with u ∈ U ,
w ∈ U⊥. Then u is the unique optimal approximation (with respect to the norm) of v in U in the sense that
∥ v − u ∥ = ∥ w ∥ < ∥ v − x ∥ for all x ∈ U \ {u}.

Furthermore, if { e1, . . . , en } is an orthonormal basis of U , then u =
∑

⟨ v, ej ⟩ ej.

The orthogonal projection operator is then PU (v) =
∑

⟨ v, ej ⟩ ej ∈ U for v ∈ V . It is easy to see that

• P 2
U = PU and so is a projection

• (textbook Sec. 6.3 Q9) (PU )
∗ = PU

• (Bessel inequality) ∥ v ∥2 = ∥ w ∥2 + ∥ u ∥2 ≥ ∥ u ∥2 =
∑

| ⟨ v, ej ⟩ |2, with equality holds if and only if
v ∈ U (Parseval identity)

1Counter-examples exist for infinite dimensional spaces.
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A typical application of orthogonal projection is to find approximations of a function in various function spaces.

For example, consider V = C 0([0, 1]) equipped with the (usual) inner product ⟨ f, g ⟩ =
∫ 1

0
f(t)g(t) dt, v(x) = ex

for x ∈ [0, 1], and U = Span
( {

1, x, x2
} )

. The optimal approximation PU (v) of v in U can be computed with
the following steps:

1. take a basis β =
{
1, x, x2

}
of U

2. apply Gram–Schmidt process on β to obtain an orthogonal basis α =
{
1, x− 1

2 , x
2 − x+ 1

6

}
3. construct u = ⟨ v, 1 ⟩

∥ 1∥2 · 1 + ⟨v, x−1/2 ⟩
∥x−1/2∥2 · (x− 1/2) +

⟨ v, x2−x+1/6 ⟩
∥x2−x+1/6∥2 · (x2 − x+ 1/6) ≈ 0.84x2 + 0.85x+ 1.01.

The most difficult part in this computation is to handle the orthogonal basis correctly.

2 Adjoint Operator

I was not aware that the lecture has not finished discussing adjoint operators yet. I will talk about adjoint operators
in the later tutorial sessions.

3 Exercises

1. (See also textbook Sec. 6.2 Q14)

Let W1 and W2 be subspaces of an inner product space V . Show that (W1 +W2)
⊥ = W⊥

1 ∩W⊥
2 .

Furthermore, if V is finite dimensional, show that (W1 ∩W2)
⊥ = W⊥

1 +W⊥
2 .

Solution:

(a) Since W1,W2 ⊆ W1 +W2, by property of orthogonal complement we have (W1 +W2)
⊥ ⊆ W⊥

1 and
(W1 +W2)

⊥ ⊆ W⊥
2 , so (W1 +W2)

⊥ ⊆ W⊥
1 ∩W⊥

2 .

Let v ∈ W⊥
1 ∩W⊥

2 , w ∈ W1 +W2. Then v ∈ W⊥
1 and v ∈ W⊥

2 .
By definition, there exists w1 ∈ W1 and w2 ∈ W2 such that w = w1 + w2.
Then ⟨ v, w1 ⟩ = ⟨ v, w2 ⟩ = 0. This implies that ⟨ v, w1 + w2 ⟩ = 0.
As w is arbitrary, v ∈ (W1 +W2)

⊥. As v is arbitrary, W⊥
1 ∩W⊥

2 ⊆ (W1 +W2)
⊥.

Combined, W⊥
1 ∩W⊥

2 = (W1 +W2)
⊥.

(b) Since V is finite dimensional, (W⊥
1 )⊥ = W1, (W

⊥
2 )⊥ = W2, and ((W⊥

1 +W⊥
2 )⊥)⊥ = W⊥

1 +W⊥
2 .

By the previous part, W1 ∩W2 = (W⊥
1 )⊥ ∩ (W⊥

2 )⊥ = (W⊥
1 +W⊥

2 )⊥, so (W1 ∩W2)
⊥ = W⊥

1 +W⊥
2 .

Note

We now have many pairs of concepts that have some form of duality when coupled together (at least in
the case of finite dimensional spaces): subspace sum and intersection, nullspace and range, a subspace
and its orthogonal complement, and (in upcoming lectures) a linear map and its adjoint.

2. Let V be an inner product space, and U,W ⊆ V be two finite dimensional subspaces with corresponding
orthogonal projection PU , PW .
Show that PUPW = 0 if and only if U ⊥ W , that is ⟨ u, w ⟩ = 0 for all u ∈ U,w ∈ W .

Solution: Let βU = { e1, . . . , en } and βW = { f1, . . . , fm } be orthonormal bases of U,W respectively.

Suppose PUPW = 0.
Let u ∈ U,w ∈ W . Then there exists scalars c1, . . . , cn ∈ F such that u =

∑
cjuj .

As PUPW = 0, we have 0 = PUPWw = PUw =
∑

⟨ w, ej ⟩ ej . Since βU is a basis, ⟨ w, ej ⟩ = 0 for all j.
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This implies ⟨ u, w ⟩ =
∑

cj ⟨ ej , w ⟩ = 0.
As u,w are arbitrary, U ⊥ W .

Suppose U ⊥ W .
Let v ∈ V . Then PW v ∈ W , so there exists d1, . . . , dm ∈ F such that PW v =

∑
dkfk.

As U ⊥ W , we have ⟨ fk, ej ⟩ = 0 for all j, k.
This implies that PUPW v = PU (

∑
dkfk) =

∑
k dk

∑
j ⟨ fk, ej ⟩ ej = 0.

As v is arbitrary, PUPW = 0.

Therefore, PUPW = 0 if and only if U ⊥ W .

Note

Since U ⊥ W if and only if W ⊥ U , we have PUPW = 0 if and only if PWPU = 0.

3. Let V be a complex inner product space, U ⊆ V be a subspace, v ∈ V . Suppose for all u ∈ U , ⟨ v, u ⟩ +
⟨ u, v ⟩ ≤ ⟨ u, u ⟩. Show that v ∈ U⊥.

Solution: Suppose on the contrary that v /∈ U⊥. Then there exists u0 ∈ U such that ⟨ v, u0 ⟩ ≠ 0. In
particular, u0 ̸= 0.

Let ⟨ v, u0 ⟩ = r+ im with r,m ∈ R, so r,m are the real and the imaginary part of ⟨ v, u0 ⟩ respectively.
If r = 0, we must have m ̸= 0, so iu0 ∈ U and ⟨ v, iu0 ⟩ = −i ⟨ v, u0 ⟩ = m with a nonzero real part. So
by considering iu0 instead, we may always assume that r ̸= 0.
If r < 0, we have −u0 ∈ U and ⟨ v, −u0 ⟩ = −⟨ v, u0 ⟩ = (−r) + i(−m) with a positive real part. So by
considering −u0 instead, we may always assume that r > 0.

Let λ = r
∥u0 ∥2 > 0. Then λu0 ∈ U , so by assumption 2λr = ⟨ v, λu0 ⟩ + ⟨ λu0, v ⟩ ≤ ⟨ λu0, λu0 ⟩ =

λ2 ∥ u0 ∥2 = λr. Contradiction arises as λ, r > 0.

This implies that v ∈ U⊥.

Note

By the proof, we can also see that ⟨ u, u ⟩ in the assumption can be replaced with c ⟨ u, u ⟩ with any

given c > 0. In another word, if ⟨ v, u ⟩+⟨u, v ⟩
⟨u, u ⟩ has a uniform upper bound on u ∈ U \ {0}, v ∈ U⊥ (in

which case this quantity is uniformly zero).

4. Let V be an inner product space, U ⊆ V be a finite dimensional subspace with an ordered basis β =
{ v1, . . . , vn } not necessarily orthonormal, x ∈ V , y = PU (x) ∈ U be the orthogonal projection of x onto U .
Let G ∈ Fn×n be the Gram matrix / cross-product matrix of β defined by Gjk = ⟨ vk, vj ⟩ for each j, k2.

Find the β-coordinate [y]β of y with the column vector a =
(
⟨ x, v1 ⟩ . . . ⟨ x, vn ⟩

)T
and the Gram matrix

G of β.

Solution: Let α = { e1, . . . , en } be an orthonormal basis of U .

By definition, y = PU (x) =
∑

⟨ x, ej ⟩ ej . In another word, [y]α =
(
⟨ x, e1 ⟩ . . . ⟨ x, en ⟩

)T
.

Let c = [y]β =
(
c1 . . . cn

)T
with c1, . . . , cn ∈ F .

Then on R = [IdU ]
α
β , [y]α = [Id]αβ [y]β = R[y]β , which implies that ⟨ x, ej ⟩ = ([y]α)j = (R[y]β)j =

2Depending on convention, some defines the Gram matrix as G′
jk = ⟨ vj , vk ⟩, and the two definitions differ by a complex

conjugate G′
jk = Gjk. For real inner product spaces, the two definitions are identical.
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∑
k Rjkck for each j.

By definition, Rjk = ([Id]αβ)jk = ⟨ vk, ej ⟩ and vk =
∑

Rjkej for each k. This implies that for each k,

ak = ⟨ x, vk ⟩ =
∑
j

Rjk ⟨ x, ej ⟩ =
∑
j

∑
l

RjkRjlcl =
∑
l

∑
j

(R∗)kjRjlcl = (R∗Rc)k

With direct computation, we also have

(R∗R)jk =
∑
l

RljRlk =
∑
l

⟨ vj , el ⟩ ⟨ vk, el ⟩ =

〈
vk,

∑
l

⟨ vj , el ⟩ el

〉
= ⟨ vk, vj ⟩ = Gjk

so G = R∗R, a = Gc, [y]β = c = G−1a.

Note

If β is orthonormal, by the definition of orthogonal projection we have y = PU (x) =
∑

⟨ x, vj ⟩ vj and so

[y]β =
(
⟨ x, v1 ⟩ . . . ⟨ x, vn ⟩

)T
= a. This exercise simply states that a correction factor G−1 is needed

to compensate for the non-orthonormality.

As noted by one of the students in the tutorial session, you can just do the algebra and obtain the same
result, without going through the change of coordinate matrix R from β to an orthonormal basis α.

On the other hand, the argument here that uses R should give you some insight on the Gram matrix. For
example, if α is obtained from applying Gram–Schmidt process on β, we have vk ∈ Span( { e1, . . . , ek } )
for each k, so Rjk = ⟨ vk, ej ⟩ = 0 whenever j > k, and thus R is upper triangular. In this case,
G = R∗R is the Cholesky decomposition of G. Furthermore, since R is the change of coordinate matrix,
it is invertible (and so is R∗), and thus G is also invertible.

We can use the Gram matrix on other computations as well. Another example is the following result:

Lemma. Let V be finite dimensional with basis β = { v1, . . . , vn } and corresponding Gram matrix G,
and A ∈ Fn×m, U = Span( { u1, . . . , um } ) with uj =

∑
Akjvk for each j.

Then
{
[v]β

∣∣ v ∈ U⊥ }
= N ( A∗G ).

The proof of this lemma is a simple computation. There are a few more examples concerning Riesz vector
and adjoint operators, which we will discuss in later tutorial sessions.

While using Gram matrix (sometimes) allows circumventing the need of explicitly computing for an
orthonormal basis (e.g. by Gram–Schmidt process), evaluating G and G−1 can be computationally tough,
and having an orthonormal basis is usually desirable, so it may be better (and occasionally easier) to just
construct an orthonormal basis directly.
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