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Spectral decomposition
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Proposition. Let V be an i.p.s. and W ⊂ V be a finite-dim
subspace with an orthonormal basis {v1, · · · , vk}. Then the
orthogonal projection T : V → V defined by

T (y) =
k∑

i=1

〈y , vi 〉vi ,

is a linear operator s.t.

(a) N(T ) = W⊥ and R(T ) = W .

(b) T 2 = T .

(c) T is self-adjoint.

RK: In fact, properties (a) and (b) uniquely define the orthogonal
projection onto W , so they are also often used as the definition of
an orthogonal projection.
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Pf.: First note that T is linear because 〈·, ·〉 is linear in the first
component.

(a) Note

N(T ) = {y ∈ V :
k∑

i=1

〈y , vi 〉vi = 0}

= {y ∈ V : 〈y , vi 〉 = 0, i = 1, · · · , k}
= W⊥,

since {v1, · · · , vk} is a basis for W .

To show: R(T ) = W .
By definition, R(T ) ⊂W . On the other hand, let u ∈W ,

Note W = span({v1, · · · , vk}) and {v1, · · · , vk} is orthonormal.
We have:

u =
k∑

i=1

〈u, vi 〉vi = T (u),

so W ⊂ R(T ). Thus, R(T ) = W , and T |W = IW .
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(b) From (a), we see that

T 2 = T ◦ T = T |R(T ) ◦ T = T |W ◦ T = IW ◦ T = T .

(c) Take x , y ∈ V = W ⊕W⊥, then

x = x1 + x2, y = y1 + y2

with x1, y1 ∈W and x2, y2 ∈W⊥. Then,

T (x) = x1, T (y) = y1.

Hence,

〈T (x), y〉 = 〈x1, y1 + y2〉 = 〈x1, y1〉,
〈x ,T (y)〉 = 〈x1 + x2, y1〉 = 〈x1, y1〉.

So it holds that 〈T (x), y〉 = 〈x ,T (y)〉. This shows T = T ∗, i.e. T
is self-adjoint.
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Spectral Theorem. Let T be a linear operator on a finite-
dim i.p.s. V over F with distinct eigenvalues λ1, · · · , λk .
Assume that T is normal (resp. self-adjoint) if F = C (resp.
F = R). For i = 1, · · · , k, let Ei = Eλi

be the eigenspace of
T corresponding to λi , and let Ti be the orthogonal projec-
tion onto Ei . Then,

(a) V = E1 ⊕ E2 ⊕ · · · ⊕ Ek .

(b) E⊥i = ⊕j 6=iEj for i = 1, · · · , k .

(c) TiTj = δijTj for 1 ≤ i , j ≤ k .

(d) I = T1 + T2 + · · ·+ Tk . (resolution of identity)

(e) T = λ1T1+λ2T2+· · ·+λkTk . (spectral decomposition)
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Pf.: (a) This follows from the fact that T is diagonalizable.

(b) We already know that Ej ⊂ E⊥i for j 6= i , so ⊕j 6=iEj ⊂ E⊥i . The
identity then follows by comparing the dimensions:

dim (E⊥
i ) = dim (V )− dim (Ei ) =

∑
j 6=i

dim (Ej).

(c) It is direct to see

TiTj = Ti |R(Tj ) ◦ Tj = Ti |Ej
◦ Tj = δij IEj

◦ Tj = δijTj .

(d)&(e): Since V = E1 ⊕ · · · ⊕ Ek , any x ∈ V can be expressed
uniquely as

x = x1 + x2 + · · ·+ xk , xi ∈ Ei .

Then Ti (x) = Ti (x1) + · · · + Ti (xk) = Ti (xi ) = xi since Ti is
orthogonal projection on Eλi

. Then (T1 + · · ·+ Tk)(x) = T1(x) +
· · · + Tk(x) = x1 + · · · + xk = x = I (x), showing (d). Further,
we see: T (x) = T (x1) + · · · + T (xk) = λ1x1 + · · · + λkxk =
λ1T1(x)+· · ·+λkTk(x) = (λ1T1+· · ·+λkTk)(x), showing (e).
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RK: The set
{λ1, · · · , λk}

of distinct eigenvalues of T is called the spectrum of T ; the
decomposition

I = T1 + · · ·+ Tk

is called the resolution of the identity operator induced by T ;
and

T = λ1T1 + · · ·+ λkTk

is call the spectral decomposition of T , which says that, w.r.t.
an orthonormal basis β of eigenvectors of T , we have

[T ]β =


λ1Im1 0 · · · 0

0 λ2Im2 · · · 0
...

...
. . .

...
0 0 · · · λk Imk

 ,

where mi = dim(Eλi
) ≥ 1 and m1 + ...+ mk = dim(V ).
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Short summary of the
course
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• Foundations of abstract vector space

Topic#1: Vector space

Topic#2: Subspace

Topic#3: Span&linear (in-)dependence

Topic#4: Basis&dimension

• Linear transformations

Topic#5: Linear Transformation

Topic#6: Null space, range, &dimension theorem

Topic#7: Matrix representation of a linear transformation

Topic#8: Invertibility&isomorphism

Topic#9: Change of coordinates
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• Diagonalizability

Topic#10: Eigenvalue&eigenvector

Topic#11: Diagonalizability

Topic#12: Invariant subspace&Cayley-Hamilton theorem

• Inner product space

Topic#13: Inner product space

Topic#14: GS orthogonalization

Topic#15: Orthogonal complement

Topic#16: Adjoint of a linear operator

Topic#17: Normal&self-adjoint operators

Topic#18: Unitary&orthogonal operators

Topic#19: Spectral decomposition
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