Topic#12

Invariant subspace and Cayley-Hamilton theorem

The goal of this topic is to show

Thm (Cayley-Hamilton). Let $T \in \mathcal{L}(V)$ with $\dim(V) < \infty$, and f(t) be the c.p. of T. Then, T satisfies the characteristic equation in the sense that

$$f(T) = T_0$$
,

where T_0 is the zero transformation, i.e., f(T) is a zero transformation.

Note:

• If one has $f(t) = \sum_{k=0}^{n} a_k t^k$, then f(T) means

$$f(T) = \sum_{k=0}^{n} a_k T^k \in \mathcal{L}(V).$$

It is also convenient to write the zero transformation T₀ as 0 and hence f(T) = T₀ as f(T) = 0.

<u>Def.</u> Let $T \in \mathcal{L}(V)$, and W be a subspace of V. Then, W is T-invariant if $T(W) \subseteq W$, i.e.

$$T(v) \in W, \ \forall v \in W.$$

Lemma#1. Let $T \in \mathcal{L}(V)$, $0 \neq x \in V$. Then

$$W \stackrel{\text{def}}{=} \operatorname{span}(\{x, T(x), T^2(x), \cdots\})$$

is T-invariant. And, W is the smallest T-invariant subspace of V containing x in the sense that any T-invariant subspace of V containing x must contain W.

<u>Proof.</u> $T^k(x) \in V$ for $k = 0, 1, \dots$, so, W is a subspace of V. To show W is T-invariant, take $v \in W$, then $\exists m \geq 1 \& a_0, a_1, \dots, a_m \in \mathbb{F}$ s.t.

$$v = a_0x + a_1T(x) + \cdots + a_mT^m(x).$$

$$\therefore T(v) \stackrel{T \in \mathcal{L}}{=} T(a_0x + a_1T(x) + \dots + a_mT^m(x))$$
$$= a_0T(x) + a_1T^2(x) + \dots + a_mT^{m+1}(x) \in W.$$

 $\therefore W$ is T-invariant.

Let U be T-invariant with $x \in U$. To show $W \subset U$, take $v \in W$. As before, one can write $v = a_0x + a_1T(x) + \cdots + a_mT^m(x)$. Since $x \in U$ and U is T-invariant, all vectors $x, T(x), \ldots, T^m(x)$ are in U. Noting that U is a subspace of V, the linear combination $v = a_0x + a_1T(x) + \cdots + a_mT^m(x)$ is still in U. This shows $W \subset U$.

Due to the above lemma, we introduce

Def. For
$$0 \neq x \in V$$
 and $T \in \mathcal{L}(V)$, span $(\{x, T(x), T^2(x), \cdots\})$

is called the T-cyclic subspace of V generated by x.

Note: We let $x \neq 0$ to avoid the trivial case.

Lemma#2. Let $T \in \mathcal{L}(V)$ with $n = \dim(V) < \infty$, and $\overline{W} = \operatorname{span}(\{v, T(v), T^2(v), \cdots\})$ be the T-cyclic subspace of V generated by $0 \neq v \in V$. Let $k = \dim(W) \leq n$, then

$$\{v, T(v), T^2(v), \cdots, T^{k-1}(v)\}$$

is a basis for W.

Proof. Recall that W is the smallest T-invariant subspace of V containing v. Let

$$j \stackrel{def}{=} \max\{m \geq 1 : \gamma = \{v, T(v), \cdots, T^{m-1}(v)\} \text{ is l.indep't } \}.$$

Note $\sharp \gamma = m \leq k$, then j is well defined with $1 \leq j \leq k$.

We write

$$\beta = \{v, T(v), \cdots, T^{j-1}(v)\}\$$

that is l.indep subset of W, and define $Z \stackrel{def}{=} \operatorname{span}(\beta)$, then Z is a subspace of W with the basis β .

Claim: Z = W, i.e.

$$span(\lbrace v, T(v), \cdots, T^{j-1}(v)\rbrace) = span(\lbrace v, T(v), \cdots \rbrace),$$

then j = k. (think about why!)

Proof of Claim:

" \subseteq ": Direct to see.

"\["\]": It suffices to show $Z = \operatorname{span}\{v, T(v), \cdots, T^{j-1}(v)\}$ is a T-invariant subspace containing v. (why?)

Let $z \in Z$, then $z = c_0 v + c_1 T(v) + \cdots + c_{j-1} T^{j-1}(v)$.

$$T(z) = c_0 T(v) + c_1 T^2(v) + \cdots + c_{j-1} T^j(v).$$

By def of j, $\beta \cup \{T^j(v)\}$ is I. dep., then $T^j(v) \in \text{span}(\beta) = Z$.

T(z) is a linear combination of vectors in Z

Then, $T(z) \in Z$, since Z is a v.s.

This proves Z is T-invariant.

We need one more lemma to prove CH theorem.

Note: For $T \in \mathcal{L}(V)$, let W be a T-invariant subspace of V. Then, $T_W \in \mathcal{L}(W,W) = \mathcal{L}(W)$. (It is well defined because W is T invariant, $T(W) \subset W$.)

Lemma#3. Let $T \in \mathcal{L}(V)$ with $\dim(V) < \infty$, and W be a \overline{T} -invariant subspace of V. Then the c.p. of T_W divides the c.p. of T.

Proof. Set dim(W)=
$$k \le n < \infty$$
. Let $\gamma \stackrel{def}{=} \{v_1, \cdots, v_k\}$: o.b. for W , extend it to an o.b. $\beta = \{v_1, \cdots, v_k, v_{k+1}, \cdots, v_n\}$ for V . Set $[T]_{\beta} = A$, $[T_W]_{\gamma} = B$. Then $A = ([T(v_1)]_{\beta} | \cdots | [T(v_k)]_{\beta} | \cdots)$ $= \begin{pmatrix} B & B_1 \\ 0 & B_2 \end{pmatrix}$. Let $f(t)$: c.p. of T , $g(t)$: c.p. of T_W , then
$$f(t) = \det(A - tI_n) = \det\begin{pmatrix} B - tI_k & B_1 \\ 0 & B_2 - tI_{n-k} \end{pmatrix}$$
 $= \det(B - tI_k) \cdot \det(B_2 - tI_{n-k})$

 $= g(t) \cdot \det(B_2 - tI_{n-\nu})$

 $\therefore g(t)$ divides f(t) where g(t) is the c.p. of T_W .

Proof of Cayley-Hamilton Thm: Let f(t) be the c.p. of T.

To show: $f(T) \in \mathcal{L}(V)$ is a zero transformation, i.e.

$$f(T)(v) = 0_v$$
 for ANY $v \in V$.

Case v = 0: TRUE, since f(T) is linear.

Case $v \neq 0$: Note that from now on we FIX such nonzero v.

Let $W \stackrel{def}{=} \operatorname{span}(\{v, T(v), \cdots\})$ be the T-cyclic subspace of V generated by v with $k = \dim(W) \le n = \dim(V)$. By Lemma#2, $\beta = \{v, T(v), \cdots, T^{k-1}(v)\}$ is an o.b. for W. By $T^k(v) \in W$, we see that there are $a_0, \cdots, a_{k-1} \in \mathbb{F}$ such that

$$a_0v + a_1T(v) + \cdots + a_{k-1}T^{k-1}(v) + T^k(v) = 0.$$
 (*)

Then, $[T_W]_{\beta} = ([T_W(v)]_{\beta}|\cdots|[T_W(T^{k-1}(v)]_{\beta}) = ([T(v)]_{\beta}|\cdots|[T(T^{k-1}(v)]_{\beta}) = ([T(v)]_{\beta}|\cdots|[T^k(v)]_{\beta})$

$$=egin{pmatrix} 0 & 0 & -a_0 \ 1 & \vdots & -a_1 \ dots & \ddots & dots \ 0 & 1 & -a_{k-1} \end{pmatrix}.$$

Let $g(t) := \det([T_W]_{\beta} - tI_k)$ be the c.p. of T_W , then

$$g(t) = (-1)^k (a_0 + a_1 t + \dots + a_{k-1} t^{k-1} + t^k)$$
. (Exercise!)

(Hint: multiply the k-th row by t, added to the (k-1)-th row, then repeat it.)

By (*), we have $g(T)(v) = 0_v$.

Moreover, by Lemma#3, g(t) divides f(t), i.e., \exists poly q(t) s.t. f(t) = q(t)g(t), so that $f(T) = q(T) \circ g(T)$.

Therefore,

$$f(T)(v) = [q(T) \circ g(T)](v) = q(T)(g(T)(v)) = q(T)(0_v) = 0_v.$$

11/11