Topic#11 Diagonalizability

<u>Recall:</u> Let $T \in \mathcal{L}(V)$ with $\dim(V) < \infty$.

T diagonalizable $\Leftrightarrow \exists$ o.b. β of eigenvectors of T

: diagonalizability requires existence of e-vectors

Questions: when "such" β exist?

 1° . is there any test?

 2° . if exists, is there any way to find it out?

Thm. Let $T \in \mathcal{L}(V)$ with $\dim(V) = n$. If T has n distinct eigenvalues, then T is diagonalizable.

<u>Pf.</u> Let $\lambda_1, \dots, \lambda_n$ be *n* distinct eigenvalues of T. For each λ_i , let v_i be an eigenvector associated with λ_i . Let

$$\beta \stackrel{\mathsf{def}}{=} \{v_1, \cdots, v_n\}.$$

<u>Claim:</u> β is linearly independent. (see the pf later)

- $\therefore \dim(V) = n = \sharp \beta$
- $\therefore \beta$ is a basis for V. So β is an o.b. for V consisting entirely of eigenvectors of T. Then T is diagonalizable.

Claim is based on:

Lemma. A set of eigenvectors associated with distinct eigenvalues of T is linearly independent.

Pf.: Induction on $k \stackrel{def}{=} \sharp$ of such set S.

k=1: $S=\{v_1\}, 0\neq v_1$ is an eigenvector associated with an eigenvalue λ . Obvious to see $S=\{v_1\}$ is I. indep.

Assume "true" for $k \ge 1$, to show "true" for k + 1.

Let $S \stackrel{def}{=} \{v_1, \dots, v_{k+1}\}$ where v_i is λ_i -eVector and $\lambda_1, \dots, \lambda_{k+1}$ distinct.

To show: *S* I. indep.

Let $\sum_{i=1}^{k+1} a_i v_i = 0$. Apply $T - \lambda_{k+1}I$ to it, then

$$0 = \sum_{i=1}^{k+1} a_i (Tv_i - \lambda_{k+1}v_i)$$

$$= \sum_{i=1}^{k+1} a_i (\lambda_i v_i - \lambda_{k+1}v_i)$$

$$= \sum_{i=1}^{k} a_i (\lambda_i - \lambda_{k+1})v_i.$$

$$\because \{v_1, \cdots, v_k\}$$
 I. indep.

$$\therefore a_1(\lambda_1 - \lambda_{k+1}) = \cdots = a_k(\lambda_k - \lambda_{k+1}) = 0$$

$$\therefore \lambda_1, \cdots, \lambda_{k+1}$$
 distinct

$$\therefore a_1 = \cdots = a_k = 0.$$

Plug to $\sum_{i=1}^{k+1} a_i v_i = 0$, then $a_{k+1} v_{k+1} = 0$

$$\therefore a_{k+1} = 0 \ (v_{k+1} \neq 0).$$

Warning: The converse of Thm is false:

i.e. "if T is diagonalizable then T has n distinct e.-Value"

NOT TRUE

e.g.
$$I_{V} \in \mathcal{L}(V)$$
 (dim(V) = n):

- diagonalizable $[I_v]_\beta = I_n$
- only one e.-value=1, $I_{\nu}(\nu) = 1 \cdot \nu$

Let us find Necessary Conditions.

Observe: Let $T \in \mathcal{L}(V)$ with dim(V) = n, then

- 1° . T has at most n eigenvalues.
- **2°**. If T is diagonanilzable, i.e. \exists o.b. β s.t.

$$[T]_{\beta}=D=egin{pmatrix} \lambda_1 & & & \ & \ddots & \ & & \lambda_n \end{pmatrix}(\lambda_i\in\mathbb{F}),$$

then the c.p. of T is given by

$$f(t) = \det(D - tI_n) = (-1)^n(t - \lambda_1)(t - \lambda_2) \cdots (t - \lambda_n),$$

and hence it is necessary to require there are exactly *n* eigenvalues counting their multiplicity!

Any other necessary conditions for diagonalizable T?

Goal: need compare "miltiplicity of λ " to dim $N(T - \lambda I)!!!$

<u>Def.</u> $f(t) \in P(\mathbb{F})$ splits over \mathbb{F} if $\exists c \& a_1, \dots, a_n$ (not necessarily distinct) in \mathbb{F} such that

$$f(t) = c(t - a_1) \cdots (t - a_n).$$

e.g. if
$$\mathbb{F} = \mathbb{C}$$
, then any $f(t) \in P(\mathbb{C})$ splits over \mathbb{C} e.g. if $\mathbb{F} = \mathbb{R}$, then not all $f(t) \in P(\mathbb{R})$ can split over \mathbb{R} , e.g. $f(t) = t^2 + 1$.

<u>Prop.</u> The c.p. of a diagonablizable $T \in \mathcal{L}(V)$ over \mathbb{F} must split over \mathbb{F} .

Pf. See the previous observation.

Observe: If the c.p. f(t) splits, i.e.

$$f(t) = c(t - \lambda_1) \cdots (t - \lambda_n),$$

(note: $c = (-1)^n$ for c.p.), then after renaming λ_i we may also rewrite the above as:

$$f(t) = c(t - \lambda_1)^{m_1}(t - \lambda_2)^{m_2} \cdots (t - \lambda_k)^{m_k}$$

 $\lambda_1, \lambda_2, \cdots, \lambda_k$: **distinct** in \mathbb{F} $(k \le n)$
 $m_1, m_2, \cdots, m_k \ge 1 : m_1 + \cdots + m_k = n$

<u>Def.:</u> Let $\lambda \in \mathbb{F}$ be an eigenvalue of $T \in \mathcal{L}(V)$ with c.p. f(t). Then, the **algebraic multiplicity** (a.m.) of λ is defined to be the largest positive integer k for which $(t - \lambda)^k$ is a factor of f(t).

e.g. Let m_{λ} denote the a.m. of λ , then $m_{\lambda_i} = m_i$.

Consider the following issue: If c.p.

$$f(t) = (-1)^n (t - \lambda_1)^{m_1} (t - \lambda_2)^{m_2} \cdots (t - \lambda_k)^{m_k},$$

 $\lambda_1, \dots, \lambda_k$: distinct eigenvalues, $m_i = \text{a.m. of } \lambda_i, 1 \le i \le k$,

then can we know anything on

$$N(T - \lambda_i I_V)$$

in particular, on its dim (**geometric multiplicity of** λ_i)?

We will show:

1°.
$$1 \le dimN(T - \lambda I_v) \le m_{\lambda}$$

2°. If T is diagonalizable, then both (i) $f_T(t)$ splits, and (ii) $dimN(T - \lambda_i I_v) = m_{\lambda_i}$, $1 \le i \le k$, are satisfied. Moreover, **the converse** is also **TRUE!**

<u>Def.</u> Let λ be an eigenvalue of $T \in \mathcal{L}(V)$.

$$E_{\lambda} \stackrel{\text{def}}{=} \{ v \in V : T(v) = \lambda v \} = N(T - \lambda I_V),$$

is called the **eigenspace** of T associated with $\lambda \in \mathbb{F}$. Thus E_{λ} consists of all λ -eVectors together with the zero vector.

<u>Lemma.</u> $1 \leq \dim(E_{\lambda}) \leq m_{\lambda}$.

<u>Proof.</u> Note that E_{λ} is a subspace of V containing at least one nonzero vector (an eigenvector associated with $\lambda \in \mathbb{F}$), then

$$1 \leq \dim(E_{\lambda}) \leq \dim(V) \stackrel{def.}{=} n.$$

Let $p \stackrel{def}{=} \dim(E_{\lambda})$, and $\{v_1, \dots, v_p\}$ be an o.b. for E_{λ} . Extend $\{v_1, \dots, v_p\}$ to o.b. $\beta = \{v_1, \dots, v_p, v_{p+1}, \dots, v_p\}$ for V. Note: For $i = 1, \dots, p$,

$$0 \neq v_i \in E_{\lambda} = N(T - \lambda I)$$
, i.e., $T(v_i) = \lambda v_i$.

$$\therefore A \stackrel{def.}{=} [T]_{\beta} = \begin{pmatrix} \lambda I_p \vdots B \\ \cdots \\ 0 \vdots C \end{pmatrix}_{n \times n} \text{ for some B and C}$$

(Get directly from
$$[T]_{\beta} = ([T(v_i)]_{\beta}|\cdots|[T(v_p)]_{\beta}|[T(v_{p+1})]_{\beta}|\cdots|[T(v_n)]_{\beta}))$$

$$\therefore \text{ c.p. of } T: f(t) = \det(A - tI_n) = \det\begin{pmatrix} (\lambda - t)I_p & B \\ & \cdots & & \cdots \\ 0 & C - tI_{n-p} \end{pmatrix}$$
$$= \det((\lambda - t)I_p) \cdot \det(C - tI_{n-p})$$

$$=\underbrace{(\lambda-t)^p}\cdot \underbrace{g(t)},\quad ext{for some }g\in P_{n-p}(\mathbb{F})$$

$$\therefore \dim(E_{\lambda}) = p \le m_{\lambda} = \text{algebraic multiplicity of } \lambda.$$

The next goal: Let $T \in \mathcal{L}(V)$, dim(V) = n with c.p.

$$f(t) = (-1)^n (t - \lambda_1)^{m_1} \cdots (t - \lambda_k)^{m_k}$$

where $\lambda_1, \dots, \lambda_k$: distinct, and $m_1 + \dots + m_k = n$. We know:

$$1 \leq \dim(E_{\lambda_i}) \leq m_i, i = 1, \cdots, k.$$

to show the BIGGEST Thm of this topic:

Thm. Let $T \in \mathcal{L}(V)$ with $\dim(V) < \infty$. Assume that the c.p. of T splits over \mathbb{F} and $\lambda_1, \dots, \lambda_k$ are all the distinct eigenvalues of T. Then,

(a) T is diagonalizable iff

$$m_{\lambda_i} = \dim(E_{\lambda_i})$$
 for all $i = 1, \dots, k$;

(b) If T is diagonalizable and β_i is an o.b. for E_{λ_i} $(1 \le i \le k)$, then

$$\beta \stackrel{\text{def}}{=} \beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$$
 is an o.b. for V consisting of e-vectors of T .

An example of (b) of the Thm will be presented later (the Example.3)

<u>Lemma:</u> Let $T \in \mathcal{L}(V)$ with $\dim(V) < \infty$,

 $\lambda_1, \cdots, \lambda_k$ be distinct eigenvalues of T, S_1, \cdots, S_k be (finite) I. indep. subsets of $E_{\lambda_1}, \cdots, E_{\lambda_k}$, resp.

Then,

 $S\stackrel{def}{=} S_1 \cup \cdots \cup S_k \subset V$ is I. indep.

Pf of Lemma: Set $n_i = \sharp S_i$ and $S_i = \{v_{i1}, \dots, v_{in_i}\} \subset E_{\lambda_i}$.

Then, $S = \bigcup_{i=1}^k S_i = \{v_{ij} : 1 \le i \le k, 1 \le j \le n_i\}.$

To show S is I. indep., let $\sum_{i=1}^k \sum_{j=1}^{n_i} a_{ij} v_{ij} = 0$,

rewrite it as $0 = \sum_{i=1}^k w_i$, where each $w_i \stackrel{def}{=} \sum_{j=1}^{n_i} a_{ij} v_{ij} \in E_{\lambda_i}$.

Claim: $w_1 = \cdots = w_k = 0$.

If claim is true, then $0 = \sum_{j=1}^{n_i} a_{ij} v_{ij}$ $(1 \le i \le k)$.

Note, S_i is I. indep. for each i,

hence all $a_{ij}=0$ $(1 \le i \le k, 1 \le j \le n_i)$. Thus S is l.indep.

Pf of Claim: Otherwise, some w_i is nonzero.

Remove those zero vectors in $\sum_{i=1}^{k} w_i$, and renumber w_i , we have

$$w_1 + \cdots + w_m = 0$$
 (each $w_i \in E_{\lambda_i}$ is nonzero),

For $1 \le i \le m$, by definition, w_i is an e-vector of λ_i .

So, this is a contradiction to "a set of eigenvectors of distinct e-values must be I. indep."

Pf of the Thm. Let $n = \dim(V)$, $m_i = m_{\lambda_i}$, $d_i = \dim(E_{\lambda_i})$, 1 < i < k.

Pf of (a): " \Rightarrow " Assume: T is diagonalizable.

V has an o.b. β of e-vectors of T, set $\beta_i = \beta \cap E_{\lambda_i}, 1 \leq i \leq k$.

We see $\sharp \beta_i \leq d_i \leq m_i$ $(1 \leq i \leq k)$, then

$$n = \sharp \beta = \sum_{i=1}^{k} \sharp \beta_i \le \sum_{i=1}^{k} d_i \le \sum_{i=1}^{k} m_i = n.$$

The second equality is from 'disjoint' of β_i

 $\therefore \sum_{i=1}^k (m_i - d_i) = 0 \text{ (note: } m_i - d_i \ge 0 \text{ for each } i)$

$$\therefore m_i = d_i, 1 \leq i \leq k.$$

"
$$\Leftarrow$$
" Assume: $m_i = d_i$ (1 < i < k).

Let β_i be an o.b. for E_{λ_i} , set $\beta = \beta_1 \cup \cdots \cup \beta_k$.

Note: β is I. indep. and

$$\sharp \beta = \sum_{i=1}^k \sharp \beta_i = \sum_{i=1}^k \dim(E_{\lambda_i}) = \sum_{i=1}^k d_i = \sum_{i=1}^k m_i = n.$$

 $\therefore dim(V) = n \therefore \beta$ is an o.b. for V consisting of eigenvectors of T.

T is diagonablizable.

Pf of (b): direct consequence of the proof of "⇐" in (a).

Sum. Test for Diagonablization:

Let
$$T \in \mathcal{L}(V)$$
 with dim $(V) = n$.

Then, T is diagonalizable **iff** 1°. The c.p. of T splits 2°. For each eigenvalue λ of T,

$$\underbrace{\textit{m}_{\lambda}}_{\text{algebraic multiplicity of }\lambda} = \underbrace{\dim(\textit{E}_{\lambda})}_{\text{geometric multiplicity of }\lambda}$$

Note:
$$\dim(E_{\lambda}) = \operatorname{nullity}(T - \lambda I) = n - \operatorname{rank}(T - \lambda I)$$
.

Remark: For 2° , if $m_{\lambda}=1$, then 2° always holds true, because in this case

$$1 \leq \dim(E_{\lambda}) \leq m_{\lambda} = 1$$
, then $m_{\lambda} = \dim(E_{\lambda})$.

Example 1. Let
$$A = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} \in M_{3\times 3}(\mathbb{R}).$$

Determine its diagonalizability.

1°.
$$f_A(t) = \det(A - tI_3) = \det\begin{pmatrix} 3 - t & 1 & 0 \\ 0 & 3 - t & 0 \\ 0 & 0 & 4 - t \end{pmatrix}$$

= $\cdots = -(t - 4)(t - 3)^2$.

 \therefore The c.p. $f_A(t)$ of A splits.

2°.
$$\lambda_1=4, m_{\lambda_1}=1,$$
 2nd condition is satisfied for λ_1 . $\lambda_2=3, m_{\lambda_2}=2.$

$$A - \lambda_1 I_3 = A - 3I_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 with rank= 2.

$$\therefore \dim(E_{\lambda_2}) = 3 - 2 = 1 < 2 = m_{\lambda_2}$$

 \therefore 2nd condition fails for λ_2 .

Therefore A is NOT diagonalizable.

Example 2. Let $T: P_2(\mathbb{R}) = P_2(\mathbb{R})$,

$$f \mapsto T(f), T(f(x)) = f(1) + f'(0)x + (f'(0) + f''(0))x^{2}.$$

(1) Note
$$T \in \mathcal{L}(P_2(\mathbb{R}))$$
.

Let $\alpha = \{1, x, x^2\}$: s.o.b. Compute

$$T(1) = 1$$

 $T(x) = 1 + 1 \cdot x + (1+0)x^2 = 1 + x + x^2$
 $T(x^2) = 1 + 0 \cdot x + (0+2)x^2 = 1 + 2x^2$

$$\therefore [T]_{\alpha} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}.$$

(2) Test diagonalization for T:

Let
$$f_T(t) = \det([T] - tI_3) = \det\begin{pmatrix} 1 - t & 1 & 1 \\ 0 & 1 - t & 0 \\ 0 & 1 & 2 - t \end{pmatrix}$$
$$= \dots = -(t - 1)^2 (t - 2)^1.$$

 $\therefore f_T(t)$ splits.

$$\lambda_1 = 1: m_{\lambda_1} = 2, [T]_{\alpha} - \lambda_1 I = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 with rank= 1.

$$\therefore \dim(E_{\lambda_1}) = 3 - 1 = 2 = m_{\lambda_1}.$$

$$\lambda_2=2, \ m_{\lambda_2}=1=\dim(E_{\lambda_2}).$$

Therefore T is digonablizable.

(3) Goal: Find an o.b. β of $P_2(\mathbb{R})$ consisting of e-vectors of T

so that
$$[T]_{\beta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
.

Idea:
$$0 \neq v \in E_{\lambda} = N(T - \lambda I) \Leftrightarrow 0 \neq [v]_{\alpha} \in N([T]_{\alpha} - \lambda I)$$
.

Specifically,

$$\lambda_1 = 1$$
:

$$N([T]_{\alpha} - I_{3}) = \left\{ \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \in \mathbb{R}^{3} : \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = 0 \right\}$$
has an ordered basis $\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right\}$.

$$\beta_1 = \{1, -x + x^2\}$$
 is an ordered basis for E_{λ_1} .

$$\lambda_2=2$$
:

$$N([T]_{\alpha} - 2 \cdot I_3) = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 : \begin{pmatrix} -1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \right\}$$

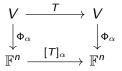
has an ordered basis $\left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$.

 $\therefore \beta_2 := \{1 + x^2\}$ is an ordered basis for E_{λ_2} .

Then, $\beta = \{1, -x + x^2, 1 + x^2\}$ is an o.b. for $P_2(\mathbb{R})$ consisting of only e-vectors of T such that

$$[T]_{\beta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Sum.



- 1°. Given diagonable $T \in \mathcal{L}(V)$, work on the e-vector/e-value problem on $[T]_{\alpha}$ with a suitable choice of o.b. α for V. Thus, we are able to find an o.b. γ for \mathbb{F}^n consisting of e-vectors of $[T]_{\alpha}$.
- 2°. Define

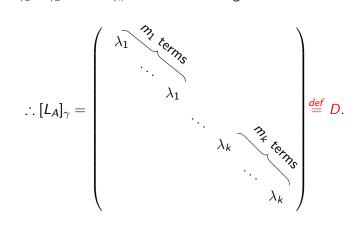
$$\beta \stackrel{\text{def.}}{=} \Phi_{\alpha}^{-1}(\gamma),$$

then β is an o.b. for V of eigenvectors of T (: $\Phi_{\alpha}: V \to \mathbb{F}^n$ is an isomorphism), so that $[T]_{\beta}$ is a diagonal matrix with diagonal entries given by the corresponding e-values.

Example 3: Let $A \in M_{n \times n}(\mathbb{F})$. Assume that A is diagonalizable. Then, $f_A(t)$ splits. Let $\lambda_1, \lambda_2, \cdots, \lambda_k$ be distinct e-values. Let $\gamma_1, \cdots, \gamma_k$ be o.b.'s for e-spaces $E_{\lambda_1}, \cdots, E_{\lambda_k}$, resp. Note

$$m_{\lambda_i} = \dim(E_{\lambda_i}), \quad n = \sum_{i=1}^k m_{\lambda_i}.$$

 $\gamma \stackrel{\text{def.}}{=} \gamma_1 \cup \gamma_2 \cup \cdots \cup \gamma_k$: o.b. for \mathbb{F}^n of eigenvectors of A.



On the other hand, from Topic#9 (page 6),

$$egin{aligned} Q &\stackrel{def}{=} (\cupebox{$\stackrel{\circ}{=}$} \cdots \cupebox{$\stackrel{\circ}{=}$} | \cupebox{$\stackrel{$$

$$[L_A]_{\gamma} = Q^{-1}AQ$$
. $(Q = [I]_{\gamma}^{\text{s.o.b.}}$ changing γ -coor. to s.o.b. coor.)

$$\therefore Q^{-1}AQ = D$$
, i.e. $A = QDQ^{-1}$.

It is then easier to compute A^n $(n = 1, 2, \cdots)$ as

$$A^n = QD^nQ^{-1}.$$

(Only need to compute λ_i^n for $1 \le i \le k$)