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Compulsory Part

Sec. 5.4

4 Q:

Sol:

Sol:

13 Q:

Let T be a linear operator on a vector space V', and let W be a T-invariant subspace of
V. Prove that W is ¢g(T')-invariant for any polynomial g(t).

Consider any polynomial g(¢). 3 non-negative integer n and scalars ay, ..., a, such that
g(t) =>"  a;t’. Now fix ve W.

Note that 7°(v) = Idy (v) = v € W. If k is a non-negative integer such that 7%(v) € W,
then T**+!(v) = T(T*(v)) € W because W is T-invariant. Hence, we have shown by
mathematical induction that T%(v) € W V non-negative integer 1.

Finally, g(T)(v) = Y., a;T*(v) € span{v,T(v),...,Tn(v)} C W. To conclude, W is
g(T)-invariant.

: For each linear operator T" on the vector space V, find an ordered basis for the T-cyclic

subspace generated by the vector z.

(b) V = Ps(R), T(f(z)) = f"(x), and = = a*.
(d) V = Maso(R), T(A) — (; ;) A and 2 = (? é)
(b)
T(z) =6x; T*2)=0; T3(2)=0.

Then (z3,6z) is an ordered basis for V.

T(z) = @ ;) . T2(z) = (2 2) —37(2).

Hence, the T-cyclic subspace W generated by z is span{z,T(2)}. If a,b € R and
az + bT'(z) = O, then by comparing entries on both sides, we clearly see that
a=0b=0. Hence, {z,T(z)} is linearly independent. Therefore,

Crer={(1 o) (2 »))

is an ordered basis for W.

Let T be a linear operator on a vector space V', let v be a nonzero vector in V, and let
W be the T-cyclic subspace of V generated by v. For any w € V, prove that w € W if
and only if there exists a polynomial g(t) such that w = g(T")(v).



17

23

Sol:

Sol:

Sol:

By the definition of T-cyclic subspace, if w € W, then day,--- ,ar and @1, --- ,ix €
{0,1,2,---}, s.t.

k
w = Z a; T (v).
j=1

Hence if we let g(z) = Z§:1

If w=g(T)(v) = Z§:1 ajz7, by the definition of T-cyclic subspace, we have w € W.

ajz', we have w = g(T)(v).

: Let A be an n X n matrix. Prove that

dim(span({I,, A, A%---})) <n

Let U =span({,...,Ay—1}). Then dimU < n.

To show the proposition, we show that span({I, 4, ...}) = U. By definition, span({/, 4,...}) 2

U. Tt then suffices to show that A* € U for all k € N. The case where k < n is trivial
from the definition of U.

Suppose there exists [ > n — 1 such that I, A,..., A" € U. Let the characteristic
polynomial of A be p(t). Then degp = n. We may assume that p(t) = > i ¢;t" for some
scalar cg, ..., ¢, with ¢, = (=1)". By Cayley-Hamilton theorem, p(4) = Y1  c; A =
col + ...+ cp A" =0. So A" = Y1 — G Al AT = Almntlgn = 3T LG gl ¢
Uas Al-rtl Al eU.

By induction, A¥ € U for all k € N.

So span({/, A,...}) =U and dimspan({I, 4, ...}) =dimU < n.

: Let T be a linear operator on a finite-dimensional vector space V', and let W be a T-

invariant subspace of V. Suppose that v, ve, ..., v, are eigenvectors of 1" corresponding
to distinct eigenvalues. Prove that if v1 + vo + -+ 4+ v is in W, then v; € W for all 7.

We prove this statement by mathematical induction on k. The case for £k =1 is trivial.
Assume that the statement is true for some positive integer k. Consider the statement
for k+1. Vi € {1,...,k+1}, let A; be the eigenvalue of T' corresponding to the eigenvector
v; of T, ie. T(v;)) = Nvj. Let w = vy + -+ + v +vpy1 € W. As W is T-invariant,
T(w) = Avr + -+ + MgV + Apr1vpr1 € W. We have

(Ak—&-l - )\1)2}1 + -+ ()\k+1 - )\k)vk = AW — T(w) e W.

Since Aq, ..., A\gy1 are distinct, Vi € {1,....,k}, Agr1 — A # 0 and thus (Agyr1 — \i)v;
is an eigenvector of T' corresponding to the eigenvalue \;. By induction hypothesis,
V1, ., v € W Finally, vg41 = w — (v1 + -+ - +vi) € W. We are done.

Optional Part

Sec. 5.4

1 Q: Label the following statements as true or false.

(a) There exists a linear operator T with no T-invariant subspace.
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Sol:

Q:
Sol:

(b) If T is a linear operator on a finite-dimensional vector space V and W is a T-
invariant subspace of V', then the characteristic polynomial of Ty, divides the
characteristic polynomial of T'.

(c) Let T be a linear operator on a finite-dimensional vector space V', and let v and
w be in V. If W is the T-cyclic subspace generated by v, W’ is the T-cyclic
subspace generated by w, and W = W', then v = w.

(d) If T is a linear operator on a finite-dimensional vector space V', then for any
v € V the T-cyclic subspace generated by v is the same as the T-cyclic subspace
generated by T'(v).

(e) Let T be a liner operator on an n-dimensional vector space. Then there exists
a polynomial ¢(t) of degree n such that g(T') = Tp.

n

(f) Any polynomial of degree n with leading coefficient (—1)™ is the characteristic

polynomial of some linear operator.

(g) If T is a linear operator on a finite-dimensional vector space V', and V is the
direct sum of k£ T-invariant subspaces, then there is an ordered basis § for V'
such that [T]g is a direct sum of k£ matrices.

) False.
) True.
) False.
d) False.
) True.
) True.

(g) True.

Use the Cayley-Hamilton theorem (Theorem 5.23) to prove its corollary for matrices.

Let A be an n x n matrix, and let f(t) be the characteristic polynomial of A. We
want to show that f(A) = O.

Consider the linear operator L4. Then f(t) is the characteristic polynomial of L 4.
By Cayley-Hamilton theorem (Theorem 5.23), f(La) is the zero transformation.
Then

0
f(La)(ei) = f(A)ei = |
0
for any i € {1,...,n}. So we have
1 0
fA) =f(A) | : =0
0 1

as desired.

: Let T be a linear operator on a finite-dimensional vector space V.

(a) Prove that if the characteristic polynomial of T splits, then so does the charac-
teristic polynomial of the restriction of T to any T-invariant subspace of V.



(b) Deduce that if the characteristic polynomial of T' splits, then any nontrivial
T-invariant subspace of V' contains an eigenvector of T

Sol: (a) Let W be a T-invariant subspace of V' and let g(¢) be the characteristic poly-
nomial of Tyy. By Theorem 5.21, g(t) divides the characteristic polynomial f(t)

of T. As f(t) splits, so does g(t).
(b) We prove the statement by contradiction. Assume the contrary that there is a
nontrivial T-invariant subspace W of V' containing no eigenvectors of 7. By (a)
the characteristic polynomial g(¢) of Ty splits, i.e. 3 scalars ay, ..., a such that

g(t) = (=1)*(t —ar) -+ (t — ay).

By Cayley-Hamilton theorem, g(Ty ) is the zero transformation. Fix w € W.
Then (Tyy —ay Idw) - - - (T —ag Idw ) (w) = (=1)Fg(Ty ) (w) = 0. Ifi € {1,.... k}
and (Tyy — a; Idw) - - - (Tw — ag Idy ) (w) = 0, then

(Tw — ai1 Idw) - (T — aj Idw)(w) =0,

otherwise the left hand side of the above equality is an eigenvector of Ty corre-
sponding to the eigenvalue a;, where the expression (Tyy — a1 Idw) -« (Tw —
ar, Idyw ) (w) denotes w by convention. By mathematical induction, w = 0. It
leads to contradiction that W is a trivial subspace of V. We are done.

18 Q: Let A be an n x n matrix with characteristic polynomial
ft) = (=1)™" + ap_1t" "t + - + ait + ay.

(a) Prove that A is invertible if and only if ag # 0.
(b) Prove that if A is invertible, then

A7 = (=1/ag)[(-1)"A" ' + ap1 AV + - ar D).

Sol: (a) Note that ag = f(0) det(A — 01,,) = det(A). Hence A is invertible if and only if
ag 7& 0.
(b) By Cayley-Hamilton theorem, f(A) = O. By (a), ap # 0. Rearranging, we get

(== A" ! 4 a1 AV LA = 1,

ao

whence A~! = (—%)[(—1)"14"_1 +an 1 A" 2 - ar ).
19 Sol:
We show the proposition by induction on k.

For the case k = 1, the characteristic polynomial of the matrix (—ao) isp(t) =—ap—t =
(—1)(ag +t) for all scalar ag. So the proposition holds when k = 1.

Suppose for some | € ZT the proposition holds when k = [. Let ao,...,a; be scalars,



and A;y1 = 0 —az2 . Then the characteristic polynomial is

—t 0 ... 0 —ap
1 —t ... 0 —aq

I
o
D
-+

- O

—

o

0O 0 ... 1 —a—t
—t 0 ... 0 —aq

—_
|

~

@)

.. —a9
=—tdet| 0 1 ... 0 —a3 + (=1)!(—ag) det

0 0 o1 —Qy -1
= —t(—D)ar + ... a7 + ) — (=1)ag
= (=D ag + art + ... + aitt + Y

So the proposition holds when k =1 + 1.

By induction, the proposition holds for all k.
00 ... 0 =—aqag
1 0 ... 0 —ai

Sodet [0 1 ... 0 —as [ = (-1)%(ag+art+...+ap 1t"1 +t*) for all k and all
00 ... 1 —Aakp—1
scalars ag,...,ap_1.

24 Q: Prove that the restriction of a diagonalizable linear operator T to any nontrivial
T-invariant subspace is also diagonalizable.

Sol: Let W be a nontrivial T-invariant subspace of the domain V of T'. Note that V is
finite-dimensional.
Let A1, ..., A be all the distinct eigenvalues of T" with respective eigenspaces Ej |, ..., Ej, .
Since T is diagonalizable, we have by Theorem 5.11

V:E)\l@-"@E)\k.

Pick a finite subset {wy, ..., w,} of W such that W = span{ws, ..., w,} (say, a basis
for W). Vi e {1,...,n}, Jv;1 € Ey,, ..., v, € Ey, such that

wi =vi1 + -+ v €W,
and therefore, by Q23, Sec. 5.4, v;1,...,v;;, € W. We have

W = span{vi,1, ..., V1 ks -, Un,1s e, Un g }-



Then 3 ordered basis 8 for W such that every element in g is an eigenvector of T
Then [Tyy]s is a diagonal matrix. Ty is therefore diagonalizable.

25 Q: (a)

(b
Sol: (a)

Prove the converse to Exercise 18(a) of Section 5.2: If T"and U are diagonalizable
linear operators on a finite-dimensional vector space V' such that UT = T'U, then
T and U are simultaneously diagonalizable.

) State and prove a matrix version of (a).

Let A1,..., A\ be all the distinct eigenvalues of T' with respective eigenspaces
Ex,...,Ex,. Since T is diagonalizable, we have by Theorem 5.11

V=E>\1€B-~-@E>\k.
Fix ¢ € {1, ...,k}. We claim that E,, is U-invariant. Yv € Ey,, as
T(U(W)) =U(T(v)) = UAw) = AU(v),

U(v) € Ey,. We have proved our claim. Now because U is diagonalizable, by (24)
UEAZ- is also diagonalizable. Then 3 ordered basis 3; for Ej, such that [UEM] 3, 1s
a diagonal matrix. In addition,

is also a diagonal matrix. Let § = 81 U---U Br. We now see that

[T = [TExl]ﬁl G- D [TExk]ﬂm [Uls = [UEA1]51 - OD [UExk]ka

are direct sum of diagonal matrices. Then obviously [T]g and [U]g are also
diagonal matrices. Therefore, T',U are simultaneously diagonalizable.

We shall prove that: If A and B are diagonalizable matrices such that AB = BA,
then A and B are simultaneously diagonalizable.

Since A, B are diagonalizable, then linear operators L4, Lp are diagonalizable.
Also, as AB = BA, LyLp = Lap = Lpa = LpLy. Then by (a), La, Lp are
simultaneously diagonalizable, i.e. 3 ordered basis g for the common domain
of Ly and Lp such that [L4]g,[Lp|s are diagonal matrices. Then 3 invertible
matrix @ of the same size as A and B such that Q1 AQ = [La]g and Q7' BA =
[L)sg. Hence, A, B are simultaneously diagonalizable.



