THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2040A Solution to Homework 6

10 points for each question

Compulsory Part

Sec. 2.4

14 Q: Let

$$V = \left\{ \begin{pmatrix} a & a+b\\ 0 & c \end{pmatrix} : a, b, c \in F \right\}.$$

Construct an isomorphism from V to F^3 .

Sol: Define $T: V \to \mathsf{F}^3$ by $\forall A \in V$, $T(A) = (A_{11}, A_{12} - A_{11}, A_{22})$. We first show that T is a linear transformation. Indeed, $\forall A, B \in V$ and $\forall a \in \mathsf{F}$,

$$T(A+B) = (A_{11} + B_{11}, (A_{12} + B_{12}) - (A_{11} + B_{11}), A_{22} + B_{22})$$

= (A_{11}, A_{12} - A_{11}, A_{22}) + (B_{11}, B_{12} - B_{11}, B_{22}) = T(A) + T(B),
$$T(aA) = (aA_{11}, aA_{12} - aA_{11}, aA_{22}) = a(A_{11}, A_{12} - A_{11}, A_{22}) = aT(A).$$

Suppose $A \in V$ and T(A) = 0. Then $(A_{11}, A_{12} - A_{11}, A_{22}) = (0, 0, 0)$, implying that $A_{11} = A_{12} = A_{22} = 0$. Also, as $A \in V$, $A_{21} = 0$. Hence, A is the 2 × 2 zero matrix over F. This shows that $T: V \to \mathsf{F}^3$ is one-to-one. Also, $T: V \to \mathsf{F}^3$ is onto because $\forall a, b, c \in F$,

$$T\begin{pmatrix}a&a+b\\0&c\end{pmatrix} = (a,(a+b)-a,c) = (a,b,c).$$

Therefore, T is an isomorphism from V to F^3 .

- 15 Q: Let V and W be n-dimensional vector spaces, and let $T: V \to W$ be a linear transformation. Suppose that β is a basis for V. Prove that T is an isomorphism if and only if $T(\beta)$ is a basis for W.
 - Sol: Write $\beta = \{u_1, ..., u_n\}$, where $u_1, ..., u_n$ are distinct vectors in V. (\Rightarrow) Suppose T is an isomorphism. Then $T(u_1), ..., T(u_n)$ are distinct. Suppose $a_1, ..., a_n$ are scalars such that

$$a_1T(u_1) + \dots + a_nT(u_n) = \vec{0}.$$

Then

$$a_1u_1 + \dots + a_nu_n = T^{-1}(a_1T(u_1) + \dots + a_nT(u_n)) = T^{-1}(\vec{0}) = \vec{0}$$

As β is a basis for V and in particular linearly independent, $a_1 = \cdots = a_n = 0$. Thus, $T(\beta) = \{T(u_1), ..., T(u_n)\}$ is also linearly independent.

Since dim W = n and the cardinality of $T(\beta)$ is also n, $T(\beta)$ is a basis for V. (Alternatively, suppose $w \in W$. Then \exists scalars $a_1, ..., a_n$ such that $T^{-1}(w) = \sum_{i=1}^n a_i u_i$ and hence $w = T(T^{-1}(w)) = \sum_{i=1}^n a_i T(u_i) \in \operatorname{span} T(\beta)$. Thus, $T(\beta)$ spans W. To conclude, $T(\beta)$ is a basis for W.) 16 Q: Let B be an $n \times n$ invertible matrix. Define $\Phi : \mathsf{M}_{n \times n}(F) \to \mathsf{M}_{n \times n}(F)$ by $\Phi(A) = B^{-1}AB$. Prove that Φ is an isomorphism.

Sol: $\forall A, A' \in \mathsf{M}_{n \times n}(F)$ and $\forall a \in F$,

$$\Phi(A + A') = B^{-1}(A + A')B = B^{-1}AB + B^{-1}A'B = \Phi(A) + \Phi(A')$$

$$\Phi(aA) = B^{-1}(aA)B = a(B^{-1}AB) = a\Phi(A).$$

Hence, Φ is a linear transformation.

Method 1: Suppose $A \in \mathsf{M}_{n \times n}(F)$ and $\Phi(A)$ is the $n \times n$ zero matrix O over F. Then $A = B\Phi(A)B^{-1} = BOB^{-1} = O$. Hence, $\Phi : \mathsf{M}_{n \times n}(F) \to \mathsf{M}_{n \times n}(F)$ is one-to-one. $\forall C \in \mathsf{M}_{n \times n}(F), BCB^{-1} \in \mathsf{M}_{n \times n}(F)$ and $\Phi(BCB^{-1}) = B(B^{-1}CB)B^{-1} = C$. Hence, $\Phi : \mathsf{M}_{n \times n}(F) \to \mathsf{M}_{n \times n}(F)$ is also onto. Therefore, Φ is an isomorphism.

Method 2: Suppose $A \in M_{n \times n}(F)$ and $\Phi(A)$ is the $n \times n$ zero matrix O over F. Then $A = B\Phi(A)B^{-1} = BOB^{-1} = O$. Hence, $\Phi : M_{n \times n}(F) \to M_{n \times n}(F)$ is one-to-one. By Theorem 2.5 in Sec. 2.1, Φ is also onto. Therefore, Φ is an isomorphism.

Method 3: $\forall C \in \mathsf{M}_{n \times n}(F)$, $BCB^{-1} \in \mathsf{M}_{n \times n}(F)$ and $\Phi(BCB^{-1}) = B(B^{-1}CB)B^{-1} = C$. Hence, $\Phi : \mathsf{M}_{n \times n}(F) \to \mathsf{M}_{n \times n}(F)$ is onto.

By Theorem 2.5 in Sec. 2.1, Φ is also one-to-one. Therefore, Φ is an isomorphism.

Sec. 2.5

- 2 Q: For each of the following pairs of ordered bases β and β' for \mathbb{R}^2 , find the change of coordinate matrix that changes β' -coordinates into β -coordinates.
 - (d) $\beta = \{(-4,3), (2,-1)\}$ and $\beta' = \{(2,1), (-4,1)\}.$
 - Sol: (d) Let Q be the change of coordinate matrix that changes β' -coordinates into β coordinates. Then

$$\begin{cases} (2,1) &= Q_{11}(-4,3) + Q_{21}(2,-1); \\ (-4,1) &= Q_{12}(-4,3) + Q_{22}(2,-1). \end{cases}$$

We rewrite this system into matrix form:

$$\begin{pmatrix} 2 & -4 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 2 \\ 3 & -1 \end{pmatrix} Q.$$

On solving,

$$Q = \begin{pmatrix} -4 & 2 \\ 3 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 2 & -4 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 1 \\ \frac{3}{2} & 2 \end{pmatrix} \begin{pmatrix} 2 & -4 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 5 & -4 \end{pmatrix}$$

3 Q: For each of the following pairs of ordered bases β and β' for $\mathsf{P}_2(\mathbb{R})$, find the change of coordinate matrix that changes β' -coordinates into β -coordinates.

(f)
$$\beta = \{2x^2 - x + 1, x^2 + 3x - 2, -x^2 + 2x + 1\}$$
 and $\beta' = \{9x - 9, x^2 + 21x - 2, 3x^2 + 5x + 2\}.$

Sol: (f) Let Q be the change of coordinate matrix that changes β' -coordinates into β -coordinates. Then

$$\begin{cases} 9x - 9 &= Q_{11}(2x^2 - x + 1) + Q_{21}(x^2 + 3x - 2) + Q_{31}(-x^2 + 2x + 1); \\ x^2 + 21x - 2 &= Q_{12}(2x^2 - x + 1) + Q_{22}(x^2 + 3x - 2) + Q_{32}(-x^2 + 2x + 1); \\ 3x^2 + 5x + 2 &= Q_{13}(2x^2 - x + 1) + Q_{23}(x^2 + 3x - 2) + Q_{33}(-x^2 + 2x + 1). \end{cases}$$

We rewrite this system into matrix form:

$$\begin{pmatrix} 0 & 1 & 3 \\ 9 & 21 & 5 \\ -9 & -2 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 & -1 \\ -1 & 3 & 2 \\ 1 & -2 & 1 \end{pmatrix} Q.$$

On solving,

$$Q = \begin{pmatrix} 2 & 1 & -1 \\ -1 & 3 & 2 \\ 1 & -2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 & 3 \\ 9 & 21 & 5 \\ -9 & -2 & 2 \end{pmatrix}$$
$$= \frac{1}{18} \begin{pmatrix} 7 & 1 & 5 \\ 3 & 3 & -3 \\ -1 & 5 & 7 \end{pmatrix} \begin{pmatrix} 0 & 1 & 3 \\ 9 & 21 & 5 \\ -9 & -2 & 2 \end{pmatrix} = \begin{pmatrix} -2 & 1 & 2 \\ 3 & 4 & 1 \\ -1 & 5 & 2 \end{pmatrix}.$$

4 Q: Let T be the linear operator on \mathbb{R}^2 defined by

$$T\begin{pmatrix}a\\b\end{pmatrix} = \begin{pmatrix}2a+b\\a-3b\end{pmatrix}.$$

Let β be the standard ordered basis for \mathbb{R}^2 , and let

$$\beta' = \left\{ \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2 \end{pmatrix} \right\}.$$

Use Theorem 2.23 and the fact that

$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

to find $[T]_{\beta'}$.

Sol: We first find out the change of coordinate matrix Q that changes β '-coordinates into β -coordinates, which is

$$Q = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} Q = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$$

Note that we have

$$[T]_{\beta} = \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix}.$$

Now, by Theorem 2.23 in Sec. 2.5,

$$[T]_{\beta'} = Q^{-1}[T]_{\beta}Q = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 8 & 13 \\ -5 & -9 \end{pmatrix}.$$

6 Q: For each matrix A and ordered basis β , find $[\mathsf{L}_A]_{\beta}$. Also, find an invertible matrix Q such that $[\mathsf{L}_A]_{\beta} = Q^{-1}AQ$.

(d)
$$A = \begin{pmatrix} 13 & 1 & 4 \\ 1 & 13 & 4 \\ 4 & 4 & 10 \end{pmatrix}$$
 and $B = \left\{ \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$

Sol: (d) By the Corollary in page 115 in Sec. 2.5,

$$Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -2 & 0 & 1 \end{pmatrix}$$

is in invertible matrix such that $[\mathsf{L}_A]_\beta = Q^{-1}AQ$. Note that

$$Q^{-1} = \frac{1}{6} \begin{pmatrix} 1 & 1 & -2 \\ 3 & -3 & 0 \\ 2 & 2 & 2 \end{pmatrix}$$

Hence, we get

$$[\mathsf{L}_A]_{\beta} = \frac{1}{6} \begin{pmatrix} 1 & 1 & -2 \\ 3 & -3 & 0 \\ 2 & 2 & 2 \end{pmatrix} \begin{pmatrix} 13 & 1 & 4 \\ 1 & 13 & 4 \\ 4 & 4 & 10 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 18 \end{pmatrix}.$$

- 7 Q: In \mathbb{R}^2 , let L be the line y = mx where $m \neq 0$. Find an expression for T(x, y) where
 - (a) T is the reflection of \mathbb{R}^2 about L.
 - (b) T is the projection on L alone the line perpendicular to L.
 - Sol: (a) We assume $T(x, y) = (\bar{x}, \bar{y})$, then we have $\frac{y+\bar{y}}{2} = m\frac{x+\bar{x}}{2}$, and $(x-\bar{x}) + m(y-\bar{y}) = 0$. Solving the equation we obtain

$$T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} \frac{1-m^2}{1+m^2} & \frac{2m}{1+m^2}\\ -\frac{2m}{1+m^2} & \frac{1-m^2}{1+m^2} \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}.$$

Hence $T = \begin{pmatrix} \frac{1-m^2}{1+m^2} & \frac{2m}{1+m^2}\\ \frac{2m}{1+m^2} & \frac{m^2-1}{1+m^2} \end{pmatrix}$

(b) Similarly we assume $T(x, y) = (\bar{x}, \bar{y})$, solving $\bar{y} = m\bar{x}$, and $(x - \bar{x}) + m(y - \bar{y}) = 0$, we have

$$T\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}\frac{1}{1+m^2} & \frac{m}{1+m^2}\\\frac{m}{1+m^2} & \frac{m^2}{1+m^2}\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}.$$

Hence
$$T = \begin{pmatrix} \frac{1}{1+m^2} & \frac{m}{1+m^2} \\ \frac{m}{1+m^2} & \frac{m^2}{1+m^2} \end{pmatrix}$$

Optional Part

Sec. 2.4

- 1 Q: Label the following statements as true or false. In each part, V and W are vector spaces with ordered (finite) bases α and β , respectively, $T: V \to W$ is linear, and A and B are matrices.
 - (a) $([T]_{\alpha}^{\beta})^{-1} = [T^{-1}]_{\alpha}^{\beta}$.
 - (b) T is invertible if and only if T is one-to-one and onto.
 - (c) $T = \mathsf{L}_A$, where $A = [T]^{\beta}_{\alpha}$.
 - (d) $M_{2\times 3}(F)$ is isomorphic to F^5 .
 - (e) $\mathsf{P}_n(F)$ is isomorphic to $\mathsf{P}_m(F)$ if and only if n = m.
 - (f) AB = I implies that A and B are invertible.
 - (g) If A is invertible, then $(A^{-1})^{-1} = A$.
 - (h) A is invertible if and only if L_A is invertible.
 - (i) A must be square in order to possess an inverse.
 - Sol: (a) True.
 - (b) True.
 - (c) False.
 - (d) False.
 - (e) True.
 - (f) True.
 - (g) True.
 - (h) True.
 - (i) True.
- 11 Q: Verify that the transformation in Example 5 is one-to-one. (Example 5 in textbook) Define

$$T: P_3(R) \to M_{2 \times 2}(R)$$
 by $T(f) = \begin{pmatrix} f(1) & f(2) \\ f(3) & f(4) \end{pmatrix}$.

It is easily verified that T is linear. By use of the Lagrange interpolation formula in Section 1.6, it can be shown (compare with Exercise 22) that T(f) = O only when f is the zero polynomial. Thus T is one-to-one (see Exercise 11).

Sol: Let $f_1, f_2 \in P_3(R), T(f_1) = T(f_2)$, it suffice to show $f_1 = f_2$. Since T is linear, we have

$$T(f_1 - f_2) = T(f_1) - T(f_2) = 0,$$

 \mathbf{SO}

$$(f_1 - f_2)(1) = (f_1 - f_2)(2) = (f_1 - f_2)(3) = (f_1 - f_2)(4) = 0$$

By interpolation, $f_1 - f_2$ is zero polynomial, so $f_1 = f_2$.

17 Q: Let V and W be finite-dimensional vector spaces and $T: V \to W$ be an isomorphism. Let V_0 be a subspace of V.

- (a) Prove that $T(V_0)$ is a subspace of W.
- (b) Prove that $\dim(V_0) = \dim(T(V_0))$.
- Sol: (a) For $T(x_1), T(x_2) \in T(V_0)$, we have

$$\lambda_1 T(x_1) + \lambda_2 T(x_2) = T(\lambda_1 x_1 + \lambda_2 x_2) \in T(V_0), \qquad \forall \lambda_1, \lambda_2 \in F.$$

this is because $\lambda_1 x_1 + \lambda_2 x_2 \in V_0$ since V_0 is a subspace of V. Hence $T(V_0)$ is a subspace of W.

- (b) Since T is an isomorphism, $T|_{V_0} : V_0 \to T(V_0)$ is also an isomorphism. Hence by Theorem 2.19 we get $\dim(V_0) = \dim(T(V_0))$.
- 23 Q: Let V denote the vector space defined in Example 5 of Section 1.2, and let $W = \mathsf{P}(F)$. Define

$$T: V \to W$$
 by $T(\sigma) = \sum_{i=0}^{n} \sigma(i) x^{i}$,

where n is the largest integer such that $\sigma(n) \neq 0$. Prove that T is an isomorphism.

Sol: To show that T is an isomorphism, we need to prove T is linear, one-to-one and onto. Observe that if n is an non-negative integer such that $\sigma(m) = 0$ for any integer m greater than n, then $T(\sigma) = \sum_{i=0}^{n} \sigma(i)x^{i}$. Let $\sigma, \tau \in V$ and $c \in F$. Pick a non-negative integer n_{σ} (resp. n_{τ}) such that $\sigma(m) = 0$ (resp. $\tau(m) = 0$ for any integer m greater than n_{σ} (resp. n_{τ}). Let $n = \max\{n_{\sigma}, n_{\tau}\}$. Then for any integer m greater than n, $(\sigma + c\tau)(m) = 0 + c \cdot 0 = 0$. Hence,

$$T(\sigma + c\tau) = \sum_{i=0}^{n} (\sigma + c\tau)(i)x^{i} = \sum_{i=0}^{n} \sigma(i)x^{i} + c\sum_{i=0}^{n} \tau(i)x^{i} = T(\sigma) + cT(\tau).$$

T is thus linear.

Suppose $\sigma \in \mathsf{N}(T)$. Pick a non-negative integer n such that \forall integer m with m > n, $\sigma(m) = 0$. Then

$$\sum_{i=0}^{n} \sigma(i)x^{i} = T(\sigma) = 0.$$

By comparing coefficients, $\sigma(0) = \cdots = \sigma(n) = 0$. Hence, $\sigma(m) = 0$ for any non-negative integer m. T is thus one-to-one.

Let $f \in W$. Write $f(x) = \sum_{i=0}^{n} a_i x^i$, where *n* is a non-negative integer and $a_0, ..., a_n \in F$. Define $\sigma \in V$ by \forall non-negative integer *m*,

$$\sigma(m) = \begin{cases} a_m & \text{if } m \le n; \\ 0 & \text{if } m > n. \end{cases}$$

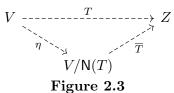
Hence T is onto. We are done.

24 Q: Let $T: V \to Z$ be a linear transformation of a vector space V onto a vector space Z. Define the mapping

$$\overline{T}: V/\mathsf{N}(T) \to Z \quad \text{by} \quad \overline{T}(v + \mathsf{N}(T)) = T(v)$$

for any coset v + N(T) in V/N(T).

- (a) Prove that \overline{T} is well-defined; that is, prove that if v + N(T) = v' + N(T), then T(v) = T(v').
- (b) Prove that \overline{T} is linear.
- (c) Prove that \overline{T} is isomorphism.
- (d) Prove that the diagram shown in Figure 2.3 commutes; that is, prove that $T = \overline{T}\eta$.



- Sol: (a) Suppose $v, v' \in V$ and $v + \mathsf{N}(T) = v' + \mathsf{N}(T)$. Let w = v v'. Then $w \in \mathsf{N}(T)$ and hence T(v) = T(v' + w) = T(v') + T(w) = T(v'). Therefore, \overline{T} is well-defined.
 - (b) Let $v, v' \in V$ and $c \in F$. Then

$$\begin{split} \overline{T}((v + \mathsf{N}(T)) + c(v' + \mathsf{N}(T))) &= \overline{T}((v + cv') + \mathsf{N}(T)) \\ &= T(v + c'v) = T(v) + cT(v') \\ &= \overline{T}(v + \mathsf{N}(T)) + c\overline{T}(v' + \mathsf{N}(T)). \end{split}$$

Therefore, \overline{T} is linear.

- (c) By (b), it remains to show that T is one-to-one and onto. Let v ∈ V and v + N(T) ∈ N(T). Then T(v) = T(v + N(T)) = 0. In other words, v ∈ N(T). Hence v + N(T) = N(T). T is one-to-one. Let z ∈ Z. Since T is onto, ∃v ∈ V such that T(v + N(T)) = T(v) = z. Thus, T is also onto. To conclude, T is an isomorphism.
- (d) Fix $v \in V$. Then

$$\overline{T}(\eta(v)) = \overline{T}(v + \mathsf{N}(T)) = T(v).$$

Therefore, $\overline{T}\eta = T$.

Sec. 2.5

- 1 Q: Label the following statements as true or false.
 - (a) Suppose that $\beta = \{x_1, x_2, ..., x_n\}$ and $\beta' = \{x'_1, x'_2, ..., x'_n\}$ are ordered bases for a vector space and Q is the change of coordinate matrix that changes β' coordinates into β -coordinates. Then the *j*th column of Q is $[x_j]_{\beta'}$.
 - (b) Every change of coordinate matrix is invertible.
 - (c) Let T be a linear operator on a finite-dimensional vector space V, let β and β' be ordered bases for V, and let Q be the change of coordinate matrix that changes β' -coordinates into β -coordinates. Then $[T]_{\beta} = Q[T]_{\beta'}Q^{-1}$.
 - (d) The matrices $A, B \in \mathsf{M}_{n \times n}(F)$ are called similar if $B = Q^{\mathsf{t}}AQ$ for some $Q \in \mathsf{M}_{n \times n}(F)$.
 - (e) Let T be a linear operator on a finite-dimensional vector space V. Then for any ordered bases β and γ for V, $[T]_{\beta}$ is similar to $[T]_{\gamma}$.

Sol: (a) False.

- (b) True.
- (c) True.
- (d) False.
- (e) True.
- 11 Q: Let V be a finite-dimensional vector space with ordered bases α, β , and γ .
 - (a) Prove that if Q and R are the change of coordinate matrices that change αcoordinates into β-coordinates and β-coordinates into γ-coordinates, respectively, then RQ is the change of coordinate matrix that changes α-coordinates into γ-coordinates.
 - (b) Prove that if Q changes α -coordinates into β -coordinates, then Q^{-1} changes β -coordinates into α -coordinates.
 - Sol: Write $\alpha = \{a_1, ..., a_n\}, \beta = \{b_1, ..., b_n\}$ and $\gamma = \{c_1, ..., c_n\}.$
 - (a) We have

$$a_{k} = \sum_{j=1}^{n} Q_{jk} b_{j} \quad \forall k \in \{1, ..., n\};$$

$$b_{j} = \sum_{i=1}^{n} R_{ij} c_{i} \quad \forall j \in \{1, ..., n\}.$$

Thus, $\forall k \in \{1, ..., n\}$, $a_k = \sum_{j=1}^n \sum_{i=1}^n R_{ij}Q_{jk}c_i = \sum_{i=1}^n (RQ)_{ik}a_i$. In other words, RQ is the change fo coordinate matrix that changes α -coordinates into γ -coordinates.

(b) $\forall i, j \in \{1, ..., n\}$, let $\delta_{ij} = 1$ if i = j; and $\delta_{ij} = 0$ if $i \neq j$. $\forall k \in \{1, ..., n\}$,

$$\sum_{j=1}^{n} (Q^{-1})_{jk} a_j = \sum_{i=1}^{n} \sum_{j=1}^{n} (Q^{-1})_{jk} Q_{ij} b_i = \sum_{i=1}^{n} \delta_{ik} a_i = b_k.$$

Therefore, Q^{-1} is the change of coordinate matrix that changes β -coordinates into α -coordinates.

13 Q: Let V be a finite-dimensional vector space over a field F, and let $\beta = \{x_1, x_2, ..., x_n\}$ be an ordered basis for V. Let Q be an $n \times n$ invertible matrix with entries from F. Define

$$x'_j = \sum_{i=1}^n Q_{ij} x_i \quad \text{for} 1 \le j \le n,$$

and set $\beta' = \{x'_1, x'_2, ..., x'_n\}$. Prove that β' is a basis for V and hence that Q is the change of coordinate matrix changing β' -coordinates into β -coordinates.

Sol: Suppose $c_1, ..., c_n \in F$ and $\sum_{j=1}^n c_j x'_j = \vec{0}$. Then

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_j Q_{ij} x_i = \vec{0}.$$

Since β is linearly independent, we have a system of linear equations

$$\begin{cases} Q_{11}c_1 + \dots + Q_{1n}c_n &= 0, \\ &\vdots \\ Q_{n1}c_1 + \dots + Q_{nn}c_n &= 0. \end{cases}$$

As Q is invertible, $c_1 = \cdots = c_n = 0$. Therefore, β' is linearly independent. This also forces that x'_1, \ldots, x'_n are distinct (otherwise, say $x'_i = x'_j$ but $i \neq j$, then $1 \cdot x'_i + (-1) \cdot x'_j = \vec{0}$ which leads to contradiction). As V is of dimension n and the cardinality of β' is also n, β' is a basis for V.