SUGGESTED SOLUTIONS TO HOMEWORK 5

1. COMPULSORY PART

Exercise 1. Let $\mathsf{T} : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $\mathsf{T}(a_1, a_2) = (a_1 - a_2, a_1, 2a_1 + a_2)$. Let β be the standard ordered basis for \mathbb{R}^2 and $\gamma = \{(1, 1, 0), (0, 1, 1), (2, 2, 3)\}$. Compute $[\mathsf{T}]^{\beta}_{\beta}$. If $\alpha = \{(1, 2), (2, 3)\}$, compute $[\mathsf{T}]^{\gamma}_{\alpha}$.

Solution. Since

$$\begin{aligned} \mathsf{T}(1,0) &= (1,1,2) = -\frac{1}{3} \cdot (1,1,0) + 0 \cdot (0,1,1) + \frac{2}{3} \cdot (2,2,3), \\ \mathsf{T}(0,1) &= (-1,0,1) = -1 \cdot (1,1,0) + 1 \cdot (0,1,1) + 0 \cdot (2,2,3), \end{aligned}$$

therefore

$$[\mathsf{T}]^{\gamma}_{\beta} = \begin{pmatrix} -\frac{1}{3} & -1 \\ 0 & 1 \\ \frac{2}{3} & 0 \end{pmatrix}.$$

Since

$$\begin{aligned} \mathsf{T}(1,2) &= (-1,1,4) = -\frac{7}{3} \cdot (1,1,0) + 2 \cdot (0,1,1) + \frac{2}{3} \cdot (2,2,3), \\ \mathsf{T}(2,3) &= (-1,2,7) = -\frac{11}{3} \cdot (1,1,0) + 3 \cdot (0,1,1) + \frac{4}{3} \cdot (2,2,3), \end{aligned}$$

therefore

$$[\mathsf{T}]^{\gamma}_{\alpha} = \begin{pmatrix} -\frac{7}{3} & -\frac{11}{3} \\ 2 & 3 \\ \frac{2}{3} & \frac{4}{3} \end{pmatrix}.$$

Exercise 2. Let

$$\alpha = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\},$$

$$\beta = \{1, x, x^2\},$$

and

 $\gamma = \{1\}.$

(a) Define
$$\mathsf{T} : \mathsf{M}_{2 \times 2}(\mathbb{F}) \to \mathsf{M}_{2 \times 2}(\mathbb{F})$$
 by $\mathsf{T}(A) = A^t$. Compute $[\mathsf{T}]_{\alpha}$ and $[\mathsf{T} \begin{pmatrix} 1 & 4 \\ -1 & 6 \end{pmatrix}]_{\alpha}$.
(b) Define

$$\mathsf{T}:\mathsf{P}_2(\mathbb{R})\to\mathsf{M}_{2\times 2}(\mathbb{R})$$
 by $\mathsf{T}(f(x))=\begin{pmatrix}f'(0)&2f(1)\\0&f''(3)\end{pmatrix}$,

where ' denotes differentiation. Compute $[\mathsf{T}]^{\alpha}_{\beta}$ and $[\mathsf{T}(4-6x+3x^2)]^{\alpha}_{\beta}$.

Solution. (a) Since

$$\begin{split} \mathsf{T} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} &= 1 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} , \\ \mathsf{T} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} &= 0 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} , \\ \mathsf{T} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} &= 0 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} , \\ \mathsf{T} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} &= 0 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} , \end{split}$$

 ${\rm therefore}$

$$[\mathsf{T}]_{\alpha} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

 and

$$[\mathsf{T}\begin{pmatrix}1&4\\-1&6\end{pmatrix}]_{\alpha} = [\begin{pmatrix}1&-1\\4&6\end{pmatrix}]_{\alpha} = \begin{pmatrix}1\\-1\\4\\6\end{pmatrix}.$$

(b) Since

$$\begin{aligned} \mathsf{T}(1) &= \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},\\ \mathsf{T}(x) &= \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},\\ \mathsf{T}(x^2) &= \begin{pmatrix} 0 & 2 \\ 0 & 2 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},\end{aligned}$$

therefore

$$[\mathsf{T}]^{\alpha}_{\beta} = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix},$$

 $\quad \text{and} \quad$

$$[\mathsf{T}(4-6x+3x^2)]^{\alpha}_{\beta} = \begin{bmatrix} \begin{pmatrix} -6 & 2\\ 0 & 6 \end{bmatrix}]^{\alpha}_{\beta} = \begin{pmatrix} -6\\ 2\\ 0\\ 6 \end{bmatrix}.$$

Exercise 3. Let V be a vector space with the ordered basis $\beta = \{v_1, v_2, ..., v_n\}$. Define $v_0 = 0$. There exists a linear transformation $\mathsf{T} : \mathsf{V} \to \mathsf{V}$ such that $\mathsf{T}(v_j) = v_j + v_{j-1}$ for j = 1, 2, ..., n. Compute $[\mathsf{T}]_{\beta}$.

Solution. Since

$$[\mathsf{T}(v_j)]_\beta = [v_j]_\beta + [v_{j-1}]_\beta,$$

 ${\rm therefore}$

$$([\mathsf{T}]_{\beta})_{ij} = \delta_{ji} + \delta_{j-1,i},$$

for i, j = 1, 2, ..., n, where

$$\delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

Exercise 4. Let V and W be vector spaces, and let T and U be nonzero linear transformations from V into W. If $R(T) \cap R(U) = \{0\}$, prove that $\{T, U\}$ is a linearly independent subset of $\mathcal{L}(V, W)$.

Solution. Since T and U are nonzero linear transformations, then there exists $v_1, v_2 \in \mathsf{V}$ such that $\mathsf{T}(v_1) \neq 0$ and $\mathsf{U}(v_2) \neq 0$. Assume there exist $c_1, c_2 \in \mathbb{F}$ such that

$$c_1\mathsf{T} + c_2\mathsf{U} = 0_{\mathcal{L}(\mathsf{V},\mathsf{W})},$$

 then

$$c_1 \mathsf{T}(v_1) + c_2 \mathsf{U}(v_1) = 0_{\mathsf{W}}, \quad c_1 \mathsf{T}(v_2) + c_2 \mathsf{U}(v_2) = 0_{\mathsf{W}},$$

which implies that

$$\mathsf{T}(c_1v_1) = \mathsf{U}(-c_2v_1), \quad \mathsf{T}(c_1v_2) = \mathsf{U}(-c_2v_2).$$

Since $R(T) \cap R(U) = \{0\}$, therefore

$$T(c_1v_1) = 0_W, \quad U(-c_2v_2) = 0_W,$$

which implies that

$$c_1 = c_2 = 0,$$

therefore T and U are linearly independent.

Exercise 5. Let $V = P(\mathbb{R})$, and for $j \ge 1$ define $\mathsf{T}_j(f(x)) = f^{(j)}(x)$, where $f^{(j)}(x)$ is the *j*th derivative of f(x). Prove that the set $\{\mathsf{T}_1, \mathsf{T}_2, ..., \mathsf{T}_n\}$ is a linearly independent subset of $\mathcal{L}(\mathsf{V})$ for any positive integer *n*.

Solution. Let $\alpha_1, ..., \alpha_n \in F$ such that

$$\sum_{i=1}^{n} \alpha_i \mathsf{T}_i = 0,$$

then

$$\sum_{i=1}^{n} \alpha_i \mathsf{T}_i(x) = \alpha_1 = 0,$$
$$\sum_{i=1}^{n} \alpha_i \mathsf{T}_i(x^2) = \alpha_1 \cdot 2x + \alpha_2 \cdot 2 = 0,$$
$$\vdots$$

$$\sum_{i=1}^{n} \alpha_i \mathsf{T}_i(x^n) = \alpha_1 \cdot nx^{n-1} + \alpha_2 \cdot n(n-1)x^{n-2} + \dots + \alpha_n \cdot n! = 0,$$

therefore

$$\alpha_1 = \alpha_2 = \dots = a_n = 0,$$

which implies $\{T_1, T_2, ..., T_n\}$ is a linearly independent subset.

Exercise 6. Let g(x) = 3 + x. Let $\mathsf{T} : \mathsf{P}_2(\mathbb{R}) \to \mathsf{P}_2(\mathbb{R})$ and $\mathsf{U} : \mathsf{P}_2(\mathbb{R}) \to \mathbb{R}^3$ be the linear transformations respectively defined by

$$\mathsf{T}(f(x)) = f'(x)g(x) + 2f(x)$$
 and $\mathsf{U}(a + bx + cx^2) = (a + b, c, a - b).$

Let β and γ be the standard ordered bases of $\mathsf{P}_2(\mathbb{R})$ and \mathbb{R}^3 , respectively. (a) Compute $[\mathsf{U}]^{\gamma}_{\beta}$, $[\mathsf{T}]_{\beta}$, and $[\mathsf{UT}]^{\gamma}_{\beta}$ directly. (b) Let $h(x) = 3 - 2x + x^2$. Compute $[h(x)]_{\beta}$ and $[\mathsf{U}(h(x))]_{\gamma}$.

Solution. (a) Since

$$\begin{aligned} \mathsf{U}(1) &= (1,0,1) = 1 \cdot (1,0,0) + 0 \cdot (0,1,0) + 1 \cdot (0,0,1), \\ \mathsf{U}(x) &= (1,0,-1) = 1 \cdot (1,0,0) + 0 \cdot (0,1,0) + (-1) \cdot (0,0,1), \\ \mathsf{U}(x^2) &= (0,1,0) = 0 \cdot (1,0,0) + 1 \cdot (0,1,0) + 0 \cdot (0,0,1), \end{aligned}$$

 then

$$[\mathsf{U}]^{\gamma}_{\beta} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}.$$

Since

$$T(1) = 2 = 2 \cdot 1 + 0 \cdot x + 0 \cdot x^{2},$$

$$T(x) = 3 + 3x = 3 \cdot 1 + 3 \cdot x + 0 \cdot x^{2},$$

$$T(x^{2}) = 6x + 4x^{2} = 0 \cdot 1 + 6 \cdot x + 4 \cdot x^{2},$$

 then

$$[\mathsf{T}]_{\beta} = \begin{pmatrix} 2 & 3 & 0\\ 0 & 3 & 6\\ 0 & 0 & 4 \end{pmatrix}$$

Since

$$UT(1) = (2,0,2) = 2 \cdot (1,0,0) + 0 \cdot (0,1,0) + 2 \cdot (0,0,1),$$

$$UT(x) = (6,0,0) = 6 \cdot (1,0,0) + 0 \cdot (0,1,0) + 0 \cdot (0,0,1),$$

$$UT(x^2) = (6,4,-6) = 6 \cdot (1,0,0) + 4 \cdot (0,1,0) + (-6) \cdot (0,0,1),$$

 then

$$[\mathsf{UT}]^{\gamma}_{\beta} = \begin{pmatrix} 2 & 6 & 6\\ 0 & 0 & 4\\ 2 & 0 & -6 \end{pmatrix}$$

(b) Since

$$h(x) = 3 \cdot 1 + (-2) \cdot x + 1 \cdot x^2,$$

then

$$[h(x)]_{\beta} = \begin{pmatrix} 3\\ -2\\ 1 \end{pmatrix}.$$

Since

$$\mathsf{U}(h(x)) = (1,1,5) = 1 \cdot (1,0,0) + 1 \cdot (0,1,0) + 5 \cdot (0,0,1),$$

then

$$[\mathsf{U}(h(x))]_{\gamma} = \begin{pmatrix} 1\\1\\5 \end{pmatrix}.$$

Exercise 7. Let T, W, and Z be vector spaces, and let $T:V \to W$ and $U:W \to Z$ be linear.

(a) Prove that if UT is one-to-one, then T is one-to-one. Must U also be one-to-one ?

(b) Prove that if UT is onto, then U is onto. Must T also be onto ?

(c) Prove that if U and T are one-to-one and onto, then UT is also.

Solution. (a) Assume that there exists $v \in V$ such that

$$\mathsf{T}(v) = 0_{\mathsf{W}},$$

then

$$\mathsf{UT}(v) = 0_\mathsf{Z},$$

since UT is one-to-one, therefore

$$v = 0_{\mathsf{V}},$$

which implies that T is one-to-one.

However, U is not necessarily one-to-one. Indeed, consider

$$\begin{array}{ll} \mathsf{U}:\mathbb{R}^2 \to \mathbb{R} & \mathsf{T}:\mathbb{R} \to \mathbb{R}^2 \\ (x,y) \mapsto x, & x \mapsto (x,0) \end{array}$$

then T is one-to-one but U is not one-to-one.

(b) For arbitrary $z \in Z$, since UT is onto, there exists $v \in V$ such that

$$\mathsf{UT}(v) = z$$

therefore

$$\mathsf{U}(\mathsf{T}(v)) = z_{i}$$

which implies that U is onto.

However, T is not necessarily onto. Indeed, consider

$$\begin{array}{ll} \mathsf{U}:\mathbb{R}^2 \to \mathbb{R} & \mathsf{T}:\mathbb{R} \to \mathbb{R}^2 \\ (x,y) \mapsto x, & x \mapsto (x,0), \end{array}$$

then U is onto but T is not onto.

(c) To prove UT is one-to-one, assume that there exists $v \in V$ such that

$$\mathsf{UT}(v) = 0_{\mathsf{Z}},$$

since ${\sf U}$ is one-to-one, therefore

$$\mathsf{T}(v) = 0_{\mathsf{W}},$$

since T is one-to-one, therefore

$$v = 0_{\mathrm{V}}$$
.

which implies that UT is one-to-one.

To prove that UT is onto. For arbitrary $z \in Z$, since U is onto, there exists $w \in W$ such that

$$\mathsf{U}(w) = z,$$

since T is onto, there exists $v \in V$ such that

 $\mathsf{T}(v) = w,$

which implies that

$$\mathsf{UT}(v) = z$$

therefore UT is onto.

2. Optional part

Exercise 8. Label the following statements as true or false. Assume that V and W are finite-dimensional vector spaces with ordered bases β and γ , respectively, and $T, U: V \rightarrow W$ are linear transformations.

(a) For any scalar a, aT + Uis a linear transformation from V to W.

- (b) $[\mathsf{T}]^{\gamma}_{\beta} = [\mathsf{U}]^{\gamma}_{\beta}$ implies that $\mathsf{T} = \mathsf{U}$.
- (c) If $m = \dim(V)$ and $n = \dim(W)$, then $[\mathsf{T}]^{\gamma}_{\beta}$ is an $m \times n$ matrix.
- (d) $[\mathsf{T} + \mathsf{U}]^{\gamma}_{\beta} = [\mathsf{T}]^{\gamma}_{\beta} + [\mathsf{U}]^{\gamma}_{\beta}.$
- (e) $\mathcal{L}(V, W)$ is a vector space.
- (f) $\mathcal{L}(\mathsf{V},\mathsf{W}) = \mathcal{L}(\mathsf{W},\mathsf{V}).$

Solution. (a) True.

- (b) True.
- (c) False. Indeed, $[\mathsf{T}]^{\gamma}_{\beta}$ is a $n \times m$ matrix.
- (d) True.
- (e) True.
- (f) False. Indeed, consider $V = \mathbb{R}$ and $W = \mathbb{R}^2$.

Exercise 9. Let β and γ be the standard ordered bases for \mathbb{R}^n and \mathbb{R}^m , respectively. For each linear transformation $\mathsf{T}: \mathbb{R}^n \to \mathbb{R}^m$, compute $[\mathsf{T}]^{\gamma}_{\beta}$.

- (a) $\mathsf{T} : \mathbb{R}^2 \to \mathbb{R}$ defined by $\mathsf{T}(a_1, a_2) = (2a_1 a_2, 3a_1 + 4a_2, a_1).$ (b) $\mathsf{T} : \mathbb{R}^3 \to \mathbb{R}^2$ defined by $\mathsf{T}(a_1, a_2, a_3) = (2a_1 + 3a_2 a_3, a_1 + a_3).$
- (c) $\mathsf{T}: \mathbb{R}^3 \to \mathbb{R}$ defined by $\mathsf{T}(a_1, a_2, a_3) = 2a_1 + a_2 3a_3$.
- (d) $\mathsf{T}: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $\mathsf{T}(a_1, a_2, a_3) = (2a_2 + a_3, -a_1 + 4a_2 + 5a_3, a_1 + a_3).$
- (e) $\mathsf{T} : \mathbb{R}^n \to \mathbb{R}^n$ defined by $\mathsf{T}(a_1, a_2, ..., a_n) = (a_1, a_1, ..., a_1).$
- (f) $\mathsf{T}: \mathbb{R}^n \to \mathbb{R}^n$ defined by $\mathsf{T}(a_1, a_2, ..., a_n) = (a_n, a_{n-1}, ..., a_1).$
- (g) $\mathsf{T}: \mathbb{R}^n \to \mathbb{R}$ defined by $\mathsf{T}(a_1, a_2, ..., a_n) = a_1 + a_n$.

Solution. (a) Since

$$T(1,0) = (2,3,1) = 2 \cdot (1,0,0) + 3 \cdot (0,1,0) + 1 \cdot (0,0,1),$$

$$T(0,1) = (-1,4,0) = -1 \cdot (1,0,0) + 4 \cdot (0,1,0) + 0 \cdot (0,0,1),$$

therefore

$$[\mathsf{T}]^{\gamma}_{\beta} = \begin{pmatrix} 2 & -1\\ 3 & 4\\ 1 & 0 \end{pmatrix}.$$

(b) Since

$$\begin{aligned} \mathsf{T}(1,0,0) &= (2,1) = 2 \cdot (1,0) + 1 \cdot (0,1), \\ \mathsf{T}(0,1,0) &= (3,0) = 3 \cdot (1,0) + 0 \cdot (0,1), \\ \mathsf{T}(0,0,1) &= (-1,1) = -1 \cdot (1,0) + 1 \cdot (0,1), \end{aligned}$$

therefore

$$[\mathsf{T}]^{\gamma}_{\beta} = \begin{pmatrix} 2 & 3 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$

(c) Since

$$\begin{split} \mathsf{T}(1,0,0) &= 2, \\ \mathsf{T}(0,1,0) &= 1, \\ \mathsf{T}(0,0,1) &= -3, \end{split}$$

therefore

$$[\mathsf{T}]^{\gamma}_{\beta} = \begin{pmatrix} 2\\ 1\\ -3 \end{pmatrix}.$$

(d) Since

$$\begin{aligned} \mathsf{T}(1,0,0) &= (0,-1,1) = 0 \cdot (1,0,0) + (-1) \cdot (0,1,0) + 1 \cdot (0,0,1), \\ \mathsf{T}(0,1,0) &= (2,4,0) = 2 \cdot (1,0,0) + 4 \cdot (0,1,0) + 0 \cdot (0,0,1), \\ \mathsf{T}(0,0,1) &= (1,5,1) = 1 \cdot (1,0,0) + 5 \cdot (0,1,0) + 1 \cdot (0,0,1), \end{aligned}$$

therefore

$$[\mathsf{T}]^{\gamma}_{\beta} = \begin{pmatrix} 0 & 2 & 1 \\ -1 & 4 & 5 \\ 1 & 0 & 1 \end{pmatrix}.$$

(e) Since

$$T(1, 0, ..., 0) = (1, 1, ..., 1) = 1 \cdot (1, 0, ..., 0) + \dots + 1 \cdot (0, 0, ..., 1),$$

$$T(0, 1, ..., 0) = (0, 0, ..., 0) = 0 \cdot (1, 0, ..., 0) + \dots + 0 \cdot (0, 0, ..., 1),$$

$$\vdots$$

$$T(0, 0, ..., 1) = (0, 0, ..., 0) = 0 \cdot (1, 0, ..., 0) + \dots + 0 \cdot (0, 0, ..., 1),$$

$$\mathsf{T}(0,0,...,1) = (0,0,...,0) = 0 \cdot (1,0,...,0) + \dots + 0 \cdot (0,0,...,1),$$

therefore

$$[\mathsf{T}]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix}.$$

(f) Since

÷

$$\begin{aligned} \mathsf{T}(1,0,...,0) &= (0,...,0,1) = 0 \cdot (1,0,...,0) + \dots + 0 \cdot (0,...,1,0) + 1 \cdot (0,0,...,1), \\ \mathsf{T}(0,1,...,0) &= (0,...,1,0) = 0 \cdot (1,0,...,0) + \dots + 1 \cdot (0,...,1,0) + 0 \cdot (0,0,...,1), \end{aligned}$$

 $\mathsf{T}(0,0,...,1) = (1,0,...,0) = 1 \cdot (1,0,...,0) + \dots + 0 \cdot (0,...,1,0) + 0 \cdot (0,0,...,1),$ therefore

$$[\mathsf{T}]_{\beta}^{\gamma} = \begin{pmatrix} 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \end{pmatrix}.$$

(g) Since

$$\begin{split} \mathsf{T}(1,0,...,0,0) &= 1,\\ \mathsf{T}(0,1,...,0,0) &= 0,\\ &\vdots\\ \mathsf{T}(0,0,...,1,0) &= 0,\\ \mathsf{T}(0,0,...,0,1) &= 1, \end{split}$$

/1)

therefore

$$[\mathsf{T}]_{\beta}^{\gamma} = \begin{pmatrix} 1\\0\\\vdots\\0\\1 \end{pmatrix}.$$

Exercise 10. Let V be an *n*-dimensional vector space, and let $T : V \to V$ be a linear transformation. Suppose that W is T-invariant subspace of V having dimension k. Show that there is a basis β for V such that $[T]_{\beta}$ has the form

$$\begin{pmatrix} A & B \\ O & C \end{pmatrix}$$
,

where A is a $k \times k$ matrix and O is the $(n - k) \times k$ zero matrix.

Solution. Let $\alpha = \{w_1, ..., w_k\}$ be an ordered basis for W. Then by Replacement theorem, there exists a linearly independent subset $\alpha' = \{w'_1, ..., w'_{n-k}\}$ in V such that $\beta := \alpha \cup \alpha'$ is a basis for V. We claim that

$$[\mathsf{T}]_{\beta} = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$

It suffices to prove that $([T]_{\beta})_{ij} = 0$ for $k + 1 \le i \le n, 1 \le j \le k$. Indeed, since W is T-invariant, then $T(w_j) \in W$ for $1 \le j \le k$, which implies

$$([\mathsf{T}(w_j)]_\beta)_i = 0,$$

for $k+1 \leq i \leq n, 1 \leq j \leq k$.

Exercise 11. Let V and W be vector spaces such that $\dim(V) = \dim(W)$, and let $T : V \to W$ be linear. Show that there exist ordered bases β and γ for V and W, respectively, such that $[T]^{\gamma}_{\beta}$ is a diagonal matrix.

Solution. By the dimension theorem,

$$\dim \mathsf{N}(\mathsf{T}) + \dim \mathsf{R}(\mathsf{T}) = \dim \mathsf{W}.$$

And dim(V) = dim(W). Then let $\alpha_{V} = \{v_1, ..., v_n\}$ be an ordered basis of N(T) and $\alpha_{W} = \{w_1, ..., w_m\}$ be an ordered basis of R(T), by the Replacement theorem, there exists a linearly independent subset $\alpha'_{W} = \{w'_1, ..., w'_n\}$ such that $\gamma := \alpha'_{W} \cup \alpha_{W}$ is a basis of W. Moreover, denote

$$v_i' := \mathsf{T}^{-1}(w_i),$$

for i = 1, ..., m, and

$$\alpha'_{\mathsf{V}} := \{v'_1, ..., v'_m\}.$$

We claim that for $\beta := \alpha'_{\mathsf{V}} \cup \alpha_{\mathsf{V}}$ and $\gamma = \alpha_{\mathsf{W}} \cup \alpha'_{\mathsf{W}}$, $[\mathsf{T}]^{\gamma}_{\beta}$ is a diagonal matrix. Indeed,

$$[\mathsf{T}]^{\gamma}_{\beta} = \begin{pmatrix} I_m & O_n \\ O_n & O_m \end{pmatrix}$$

where O_n and O_m are *n*-th and *m*-th zero matrices respectively.

Exercise 12. Label the following statements as true or false. In each part, V, W, and Z denote vector spaces with ordered (finite) bases α , β , and γ , respectively; $T : V \rightarrow W$ and $U : W \rightarrow Z$ denote linear transformations; and A and B denote matrices.

- (a) $[\mathsf{U}\mathsf{T}]^{\gamma}_{\alpha} = [\mathsf{T}]^{\gamma}_{\beta}[\mathsf{U}]^{\gamma}_{\beta}.$
- (b) $[\mathsf{T}(v)]_{\beta} = [\mathsf{T}]^{\beta}_{\alpha}[v]_{\alpha}$ for all $v \in \mathsf{V}$.
- (c) $[\mathsf{U}(w)]_{\beta} = [\mathsf{U}]_{\alpha}^{\beta}[w]_{\beta}$ for all $w \in \mathsf{W}$.

- (d) $[\mathbf{V}]_{\alpha} = I.$ (e) $[\mathbf{T}^2]_{\alpha}^{\beta} = ([\mathbf{T}]_{\alpha}^{\beta})^2.$ (f) $A^2 = I$ implies that A = I or A = -I.
- (g) $\mathsf{T} = \mathsf{L}_A$ for some matrix A.
- (h) $A^2 = O$ implies that A = O, where O denotes the zero matrix.
- (i) $L_{A+B} = L_A + L_B$.
- (j) If A is square and $A_{ij} = \delta_{ij}$ for all i and j, then A = I.

Solution. (a) False. Indeed, $[\mathsf{UT}]^{\gamma}_{\alpha} = [\mathsf{U}]^{\gamma}_{\beta}[\mathsf{T}]^{\beta}_{\alpha}$.

- (b) True.
- (c) False. Indeed, $[\mathsf{U}(w)]_{\beta} = [\mathsf{U}]_{\beta}^{\gamma}[w]_{\beta}$.
- (d) True.
- (e) False. Indeed, it makes sense only $\alpha = \beta$.
- (f) False. Indeed, consider

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

then $A^2 = I$ but $A \neq I$ and $A \neq -I$.

- (g) False. Indeed, $\mathsf{T}: \mathsf{V} \to \mathsf{W}$ but $\mathsf{L}_A: \mathbb{F}^m \to \mathbb{F}^n$.
- (h) False. Indeed,

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

then $A^2 = I$ but $A \neq O$.

(i) True.

(j) True.

Exercise 13. Let V be a vector space, and let $T : V \to V$ be linear. Prove that $\mathsf{T}^2 = \mathsf{T}_0$ if and only if $\mathsf{R}(\mathsf{T}) \subset \mathsf{N}(\mathsf{T})$.

Solution. \Rightarrow : Let $y \in \mathsf{R}(\mathsf{T})$, then there exists $x \in \mathsf{V}$ such that

$$y = \mathsf{T}(x),$$

then

$$\mathsf{T}(y) = \mathsf{T}_0(x) = 0,$$

which implies that $y \in N(T)$, by the arbitrary choice of y, we have $R(T) \subset N(T)$. \Leftarrow : Let $x \in V$, then $T(x) \in R(T)$, which implies $T(x) \in N(T)$, therefore

$$\Gamma^2(x) = \mathsf{T}(\mathsf{T}(x)) = 0,$$

by the arbitrary choice of x, we have $T^2 = T_0$.

Exercise 14. Let A and B be $n \times n$ matrices. Recall that the trace of A is defined by

$$tr(A) = \sum_{i=1}^{n} A_{ii}$$

Prove that tr(AB) = tr(BA) and $tr(A) = tr(A^{t})$.

Solution. To prove tr(AB) = tr(BA), it suffices to note that

$$tr(AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}B_{ji} = tr(BA).$$

To prove $tr(A) = tr(A^t)$, it suffices to note that $A_{ii} = (A^t)_{ii}$ for $1 \le i \le n$.

Exercise 15. Let V be a finite-dimensional vector space, and let $T : V \to V$ be linear.

(a) If $rank(T) = rank(T^2)$, prove that $R(T) \cap N(T) = \{0\}$. Deduce that $V = R(T) \oplus N(T)$.

(b) Prove that $V = R(T^k) \oplus N(T^k)$ for some positive integer k.

Solution. (a) Let $y_0 \in \mathsf{R}(\mathsf{T}) \cap \mathsf{N}(\mathsf{T})$, then $\mathsf{T}(y_0) = 0_{\mathsf{V}}$ and there exists $x_0 \in \mathsf{V}$ such that

 $y_0 = \mathsf{T}(x_0),$

therefore

$$T^{2}(x_{0}) = 0_{V_{2}}$$

which implies that $x_0 \in N(T^2)$. By the Dimension theorem,

$$\dim \mathsf{N}(\mathsf{T}) = \dim \mathsf{N}(\mathsf{T}^2).$$

Then by the Replacement theorem, there exists a linearly independent subset $\alpha = \{y_1, ..., y_{n-1}\}$ such that $\{y_0, y_1, ..., y_{n-1}\}$ is a basis for N(T). Since for arbitrary $y_i \in \{y_0, y_1, ..., y_{n-1}\}, 0 \le i \le n-1$,

$$\mathsf{T}^2(y_i) = \mathsf{T}(0_\mathsf{V}) = 0_\mathsf{V},$$

which implies that $\{y_0, y_1, ..., y_{n-1}\}$ is also a basis for $N(T^2)$. Therefore there exists $c_0, c_1, ..., c_{n-1}$ such that

$$x_0 = \sum_{i=0}^{n-1} c_i y_i,$$

then

$$\mathsf{T}(x_0) = \sum_{i=0}^{n-1} c_i \mathsf{T}(y_i) = 0_{\mathsf{V}},$$

which implies that $y_0 = 0_V$. Therefore we have $\mathsf{R}(\mathsf{T}) \cap \mathsf{N}(\mathsf{T}) = \{0\}$.

By the Dimension theorem, we have

$$\dim N(T) + \dim R(T) = \dim V$$

Moreover, N(T) and R(T) are two subspaces of V, therefore $V = N(T) \oplus R(T)$.

(b) It suffices to prove that there exists $k_0 \in \mathbb{N}$ such that $rank(\mathsf{T}^{k_0}) = rank(\mathsf{T}^{k_0+1})$. Indeed, since

$$rank(\mathsf{T}^k) \ge rank(\mathsf{T}^{k+1}) \ge 0,$$

which implies that $rank(\mathsf{T}^k)$ is non-increasing as k goes to infinity and bounded below by 0. Therefore there exists a finite $k_0 \in \mathbb{N}$ such that

$$rank(\mathsf{T}^{k_0}) = rank(\mathsf{T}^{k_0+1}).$$

Exercise 16. Let V be a vector space. Determine all linear transformations T : $V \to V$ such that $T^2 = T.$

Solution. We claim that $T^2 = T$ if and only if T is the projection on a subspace. \Rightarrow : We prove that T is the projection on R(T). Indeed, for arbitrary $y \in R(T)$, then there exists $x \in V$ such that

$$y = \mathsf{T}(x),$$

 then

$$\mathsf{T}(y) = \mathsf{T}^2(x) = y,$$

by the arbitrary choice of y, we have T is the projection on $\mathsf{R}(\mathsf{T})$.

 \Leftarrow : Assume that T is the projection on a subspace W of V, then for arbitrary $x \in V$, since $T(x) \in W$, we have $T^2(x) = T(x)$, which implies that $T^2 = T$.