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1. compulsory part

Exercise 1. Let u and v be distinct vectors of a vector space V. Show that if
{u, v} is a basis for V and a and b are nonzero scalars, then both {u + v, au} and
{au, av} are also bases for V.

Solution. To show that {u+ v, au} is a base for V, it su�ces to prove that u+ v
and au are linearly independent. Indeed, suppose there exist α, β ∈ F such that

α · (u+ v) + β · au = 0,

then {
α+ aβ = 0,

α = 0,

which implies that α = β = 0.
Similarly, to show that {au, av} is a base for V, it su�ces to prove that au and

av are linearly independent. Indeed, suppose there exist α, β ∈ F such that

α · au+ β · av = 0,

then {
aα = 0,

aβ = 0,

which implies that α = β = 0.

Exercise 2. Le u, v, w be distinct vectors of a vector a space V. Show that if
{u, v, w} is a basis for V, then {u+ v + w, v + w,w} is also a basis for V.

Solution. It su�ces to prove that u+v+w, v+w and w are linearly independent.
Indeed, suppose there exist α, β, γ ∈ F such that

α(u+ v + w) + β(v + w) + γw = 0,

then 
α = 0,

α+ β = 0,

α+ β + γ = 0,

which implies that

Exercise 3. The set of all n× n matrices having trace equal to zero is a subspace
W of Mn×n(F ). Find a basis for W. What is the dimension of W?

Solution. The basis for W is {Eij}i ̸=j,1≤i,j≤n ∪ {E11 − Eii}2≤i≤n. Therefore
dim(W) = n2 − 1.

Exercise 4. Prove that a vector space is in�nite-dimensional if and only if it
contains an in�nite linearly independent subset.
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Solution. ⇒: Let V be a in�nite-dimensional vector space. Then there exists
0V ̸= v1 ∈ V, by Replacement theorem, inductively, we can pick vk+1 ∈ V such that
vk+1 /∈ span({v1, v2, ..., vk}) & V. Since V is in�nite dimensional, and by our choice
of vk, we can obtain a set of in�nitely many linear independent vector {vk}k≥1.

⇐: Let S be the in�nite linearly independent subset of a vector space V. Then
span(S) is a subspace of V with in�nite linearly independent vectors, which implies
that V is in�nite-dimensional.

Exercise 5. Let W1 and W2 be subspaces of a �nite-dimensional vector space V.
Determine necessary and su�cient conditions on W1 and W2 so that dim(W1 ∩
W2) = dim(W1).

Solution. We claim that dim(W1 ∩W2) = dim(W1) if and only if W1 ⊂ W2.
⇒: Let {wi}1≤i≤n be the basis of W1 ∩ W2 where n = dim(W1 ∩ W2). Since

W1 ∩W2 is a subspace of W1, then by Replacement theorem, there exists a linearly
independent set {w′

i}1≤i≤m such that {wi}1≤i≤n ∪ {w′
i}1≤i≤m is a basis of W1,

moreover, m + n = dim(W1), which implies that m = 0, then {wi}1≤i≤n is also a
basis of W1, therefore W1 ∩W2 = W1, or equivalently, W1 ⊂ W2.

⇐: Since W1 ⊂ W2, then W1 ∩W2 = W1 which implies that dim(W1 ∩W2) =
dim(W1).

Exercise 6. Let v1, v2, ..., vk, v be vectors in a vector space V, and de�ne W1 =
span({v1, v2, ..., vk}), and W2 = span({v1, v2, ..., vk, v}).

(a) Find necessary and su�cient conditions on v such that dim(W1) = dim(W2).
(b) State and prove a relationship involving dim(W1) and dim(W2) in the case

that dim(W1) ̸= dim(W2).

Solution. (a) We claim that dim(W1) = dim(W2) if and only if v ∈ W1.
⇒: Let {wi}1≤i≤n be a basis of W1 where n = dim(W1). Since W1 is subspace of

W2, then by Replacement theorem, there exists a linearly independent {w′
i}1≤i≤m

such that {wi}1≤i≤n ∪ {w′
i}1≤i≤m is a basis of W2, moreover, m + n = dim(W2),

which implies that m = 0, then {wi}1≤i≤n is also a basis of W2, therefore v ∈
span({wi}1≤i≤n) = W1.

⇐: Let {wi}1≤i≤n be a basis of W1 where n = dim(W1). Since v ∈ W1, therefore
{wi}1≤i≤n is also a basis of dim(W2) which implies that dim(W1) = dim(W2).

(b) Since W1 ⊂ W2, then dim(W1) < dim(W2).

Exercise 7. For a �xed a ∈ R, determine the dimension of the subspace of Pn(R)
de�ned by {f ∈ Pn(R) : f(a) = 0}.

Solution. One basis of {f ∈ Pn(R) : f(a) = 0} is {x − a, x2 − a2, ..., xn − an}.
Therefore dim(Pn(R)) = n.

Exercise 8. Let V be a �nite-dimensional vector space over C with dimension n.
Prove that if V is now regarded as a vector space over R, then dimV = 2n.

Solution. We claim that {ei}1≤i≤n ∪{iei}1≤i≤n is a basis of V over R where ei :=

(0, ...,
i-th

1 , ...0) and i is the imaginary unit. Indeed, suppose there exist αi, βj ∈ R
for 1 ≤ i ≤ n and 1 ≤ j ≤ n such that

n∑
i=1

αei +

n∑
j=1

βjiej = 0,
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then 
α1 + β1i = 0,

α2 + β2i = 0,
...

αn + βni = 0,

which implies that α1 = · · · = αn = β1 = · · · = βn = 0.

Exercise 9. Let

V = M2×2(F ), W1 =

{(
a b
c a

)
∈ V : a, b, c ∈ F

}
,

and

W2 =

{(
0 a
−a b

)
∈ V : a, b ∈ F

}
.

Prove that W1 and W2 are subspaces of V, and �nd the dimensions of W1, W2,
W1 +W2, and W1 ∩W2.

Solution. Let us prove that W1 and W2 are subspaces of V. It is straightforward
to verify that W1 and W2 are closed under vector addition, scalar addition and
scalar multiplication with the commutative property, the associative property and
the distributive property. Moreover,

0W :=

(
0 0
0 0

)
is a zero element in W1 and W2. dim(W1) = 3, dim(W2) = 2, dim(W1 +W2) = 4,
dim(W1 ∩W2) = 1. For arbitrary a, b, c ∈ F , Let us denote

w1 :=

(
a b
c a

)
, w2 :=

(
0 a
−a b

)
,

then w1 ∈ W1 and w2 ∈ W2. Since −w1 ∈ W1 and −w2 ∈ W2, moreover, w1 +
(−w1) = 0W and w2+(−w2) = 0W, therefore −w1 and −w2 are the additive inverse
of w1 and w2 respectively. In addition, we also have 1w1 = w1 and 1w2 = w2.

Since one basis of W1 is{(
1 0
0 1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)}
,

Indeed, it is straightforward to justify that vectors in the above set are linearly
independent and generate W1, therefore dim(W1) = 3.

Since one basis of W2 is {(
0 1
−1 0

)
,

(
0 0
0 1

)}
,

Indeed, it is straightforward to justify that vectors in the above set are linearly
independent and generate W2, therefore dim(W2) = 2.

Since one basis of W1 +W2 is{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
,

Indeed, it is straightforward to justify that vectors in the above set are linearly
independent and generate W1 +W2, therefore dim(W1 +W2) = 4.
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Since one basis of W1 ∩W2 is {(
0 1
−1 0

)}
,

Indeed, it is straightforward to justify that vectors in the above set are linearly
independent and generate W1 ∩W2, therefore dim(W1 ∩W2) = 1.

2. optional part

Exercise 10. Label the following statements as true or false.
(a) The zero vector space has no basis.
(b) Every vector space that is generated by a �nite set has a basis.
(c) Every vector space has a �nite basis.
(d) A vector space cannot have more than one basis.
(e) If a vector space has a �nite basis, then the number of vectors in every basis

is the same.
(f) The dimension of Pn(F ) is n.
(g) The dimension of Mm×n(F ) is m+ n.
(h) Suppose that V is a �nite-dimensional vector space, that S1 is a linearly

independent subset of V, and that S2 is a subset of V that generates V. Then S1

cannot contain more vectors than S2.
(i) If S generate the vector space V, then every vector in V can be written as a

linear combination of vectors in S in only one way.
(j) Every subspaces of a �nite-dimensional space is �nite-dimensional.
(k) If V is a vector space having dimension n, then V has exactly one subspace

with dimension 0 and exactly one subspace with dimension n.
(l) If V is a vector space having dimension n, and if S is a subset of V with n

vectors, then S is linearly independent if and only if S spans V.

Solution. (a) False. Indeed, the empty set is the basis.
(b) True.
(c) False. Indeed, P(F ) does not have a �nite basis.
(d) False. Indeed, for R2, {(1, 0), (0, 1)} and {(1, 1), (1,−1)} are two bases of R2.
(e) True.
(f) False. Indeed, dim(Pn(F )) = n+ 1.
(g) False. Indeed, dim(Mm×n(F )) = mn.
(h) True.
(i) False. Indeed, let V = R and S = {1, 2}, then 4 = 2× 1 + 2 = 2× 2.
(j) True.
(k) True.
(l) True.

Exercise 11. Determine which of the following sets are bases for P2(R).
(a) {−1− x+ 2x2, 2 + x− 2x2, 1− 2x+ 4x2}
(b) {1 + 2x+ x2, 3 + x2, x+ x2}
(c) {1− 2x− 2x2,−2 + 3x− x2, 1− x+ 6x2}
(d) {−1 + 2x+ 4x2, 3− 4x− 10x2,−2− 5x− 6x2}
(e) {1 + 2x− x2, 4− 2x+ x2,−1 + 18x− 9x2}

Solution. (a) No. Indeed, 1− 2x+ 4x2 = 5× (−1− x+ 2x2) + 3× (2 + x− 2x2).
(b) Yes.
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(c) Yes.
(d) Yes.
(e) No. Indeed, −1 + 18x− 9x2 = 7× (1 + 2x− x2)− 2× (4− 2x+ x2).

Exercise 12. Give three di�erent bases for F2 and for M2×2(F ).

Solution. For F2,

{(1, 0), (0, 1)}, {(−1, 0), (0, 1)}, {(1, 0), (0,−1)}

are three bases.
For M2×2(F ),{(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
,

{(
−1 0
0 0

)
,

(
0 −1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
,{(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
−1 0

)
,

(
0 0
0 −1

)}
,

are three bases.

Exercise 13. (a) Prove that if W1 and W2 are �nite-dimensional subspaces of a
vector space V, then the subspace W1 + W2 is �nite-dimensional, and dim(W1 +
W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).

(b) Let W1 and W2 be �nite-dimensional subspaces of a vector space V, and
let V = W1 + W2. Deduce that V is the direct sum of W1 and W2 if and only if
dim(V) = dim(W1) + dim(W2).

Solution. (a) Let {wi}1≤i≤n be a basis ofW1∩W2 where n = dim(W1∩W2). Since
W1 ∩W2 ⊂ W1, then by Replacement theorem, there exists a linearly independent
set {w′

i}1≤i≤n1
such that {wi}1≤i≤n ∪ {w′

i}1≤i≤n1
is a basis of W1 and n + n1 =

dim(W1). Similarly, since W1 ∩ W2 ⊂ W2, then by Replacement theorem, there
exists a linearly independent set {w′′

i }1≤i≤n2
such that {wi}1≤i≤n ∪ {w′′

i }1≤i≤n2
is

a basis of W2 and n+ n2 = dim(W2).
We claim that {wi}1≤i≤n ∪ {w′

i}1≤i≤n1 ∪ {w′′
i }1≤i≤n2 is a basis of W1 +W2, it

su�ces to prove that {wi}1≤i≤n∪{w′
i}1≤i≤n1

∪{w′′
i }1≤i≤n2

is linearly independent,
indeed, suppose there exist αi, α

′
j , α

′′
k ∈ F for 1 ≤ i ≤ n, 1 ≤ j ≤ n1, 1 ≤ k ≤ n2

such that
n∑

i=1

αiwi +

n1∑
j=1

αjw
′
j +

n2∑
k=1

αkw
′′
k = 0,

equivalently,

v :=

n2∑
k=1

α′′
kw

′′
k = −

n∑
i=1

αiwi −
n1∑
j=1

α′
jw

′
j ,

which implies that v ∈ W1 ∩W2, then α′′
1 = · · · = α′′

n2
= α′

1 = · · · = α′
n1

= α1 =
· · · = αn = 0. Therefore

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).

(b) ⇒: From the above discussion,

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2),
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since V is the direct sum of W1 and W2, we have

dim(W1 ∩W2) = 0,

therefore

dim(W1 +W2) = dim(W1) + dim(W2).

⇐: Since

dim(W1 +W2) = dim(W1) + dim(W2),

therefore

dim(W1 ∩W2) = 0,

which implies W1 ∩W2 = 0, then V = W1 ⊕W2.

Exercise 14. Let W1 and W2 be subspaces of a vector space V having dimensions
m and n, respectively, where m ≥ n.

(a) Prove that dim(W1 ∩W2) ≤ n.
(b) Prove that dim(W1 +W2) ≤ m+ n.

Solution. (a) Let {wi}1≤i≤l be a basis of W1∩W2 where l = dim(W1∩W2). Since
W1 ∩W2 ⊂ W2, then {wi}1≤i≤l ⊂ W2, therefore

dim(W1 ∩W2) ≤ n.

(b) Let {w′
i}1≤i≤m be a basis of W1 and {w′′

i }1≤i≤n be a basis of W2, then
W1 +W2 ⊂ span({w′

i}1≤i≤m ∪ {w′′
i }1≤i≤n), therefore

dim(W1 +W2) ≤ m+ n.

Exercise 15. (a) Find an example of subspaces W1 and W2 of R3 with dimensions
m and n, where m > n > 0, such that dim(W1 ∩W2) = n.

(b) Find an example of subspaces W1 and W2 of R3 with dimensions m and n,
where m > n > 0, such that dim(W1 +W2) = m+ n.

(c) Find an example of subspaces W1 and W2 of R3 with dimensions m and n,
where m ≥ n, such that both dim(W1 ∩W2) < n and dim(W1 +W2) < m+ n.

Solution. (a) Let W1 := {(x, y, 0) : x, y ∈ R} and W2 := {(x, 0, 0) : x ∈ R}, then
dim(W1 ∩W2) = dim(W2) = 1.

(b) LetW1 := {(x, 0, 0) : x, y,∈ R} andW2 := {(0, x, 0) : x ∈ R}, then dim(W1+
W2) = 2.

(c) Let W1 := {(x, y, 0) : x, y ∈ R} and W2 := {(x, 0, 0) : x ∈ R}, then
dim(W1) = 2, dim(W2) = 1 and dim(W1 +W2) = 2, which implies that dim(W1 +
W2) < dim(W1) + dim(W2).

Exercise 16. (a) Let W1 and W2 be subspace of a vector space V such that
V = W1 ⊕ W2. If β1 and β2 are bases for W1 and W2, respectively, show that
β1 ∩ β2 = ∅ and β1 ∪ β2 is a basis for V.

(b) Conversely, let β1 and β2 be disjoint bases for subspaces W1 and W2, respec-
tively, of a vector space V. Prove that if β1∪β2 is a basis for V, then V = W1⊕W2.

Solution. (a) First, we prove that β1 ∩ β2 = ∅. Indeed, suppose there exists
w ∈ β1 ∩ β2, then w ∈ W1 ∩W2, since V = W1 ⊕W2, therefore w = 0.

In addition, we prove that β1 ∪ β2 is a basis for V. Since V = W1 ⊕ W2,
therefore for arbitrary v ∈ V, there exists two unique vectors w1 and w2 in W1

and W2 respectively, which implies that span(β1 ∪ β2) = V. Then it su�ces to
prove that β1 ∪ β2 is a linear independent set. Indeed, let β1 = {w′

i}1≤i≤|β1| and
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β2 = {w′′
i }1≤i≤|β2|, suppose that there exist α

′
i, α

′′
j ∈ F for 1 ≤ i ≤ |β1|, 1 ≤ j ≤ |β2|

such that
|β1|∑
i=1

α′
iw

′
i +

|β2|∑
j=1

α′′
i w

′′
i = 0,

equivalently,

v :=

|β1|∑
i=1

α′
iw

′
i = −

|β2|∑
j=1

α′′
i w

′′
i ,

then v ∈ W1 ∩W2, which implies that α′
1 = · · · = α′

|β1| = α′′
1 = · · · = α′′

|β2| = 0.

(b) Let v ∈ V, since β1 ∪ β2 is a basis for V, then there exist α′
i, α

′′
j ∈ F for

1 ≤ i ≤ |β1|, 1 ≤ j ≤ |β2| such that

v =

|β1|∑
i=1

α′
iw

′
i +

|β2|∑
j=1

α′′
i w

′′
i := w1 + w2,

which implies that V = W1 +W2.
Let v ∈ W1 ∩W2, then there exist α′

i, α
′′
j ∈ F for 1 ≤ i ≤ |β1|, 1 ≤ j ≤ |β2| such

that

v =

|β1|∑
i=1

α′
iw

′
i =

|β2|∑
j=1

α′′
i w

′′
i ,

which implies that
|β1|∑
i=1

α′
iw

′
i −

|β2|∑
j=1

α′′
i w

′′
i = 0,

since β1 ∩ β2 = ∅ and β1 ∪ β2 is a basis for V, then w′
1, ..., w

′
|β1|, w

′′
1 , ..., w

′′
|β2|

are linearly independent, therefore α′
1 = · · · = α′

|β1| = α′′
1 = · · · = α′′

|β2| = 0, then
v = 0.

Therefore V = W1 ⊕W2.

Exercise 17. (a) Prove that if W1 is any subspace of a �nite-dimensional vector
space V, then there exits a subspace W2 of V such that V = W1 ⊕W2.

(b) Let V = R2 and W1 = {(a1, 0) : a1 ∈ R}. Give examples of two di�erent
subspaces W2 and W′

2 such that V = W1 ⊕W2 and V = W1 ⊕W′
2.

Solution. (a) Let {w′
i}1≤i≤n1 be a basis of W1 where n1 = dim(W1). Since

W1 ⊂ V, then by Replacement theorem, there exists a linearly independent set
{w′′

i }1≤i≤n2
such that {w′

i}1≤i≤n1
∪ {w′′

i }1≤i≤n2
is a basis of V. Then let W2 :=

span({w′′
i }1≤i≤n2

/{w′
i}1≤i≤n1

). Since {w′
i}1≤i≤n1

∩ ({w′′
i }1≤i≤n2

/{w′
i}1≤i≤n1

) = ∅,
then V = W1 ⊕W2.

(b) Let W2 = {(0, a2) : a2 ∈ R} and W′
2 = {(a, a) : a ∈ R}.


