SUGGESTED SOLUTIONS TO HOMEWORK 3

1. COMPULSORY PART

Exercise 1. Let u and v be distinct vectors of a vector space V. Show that if $\{u, v\}$ is a basis for V and a and b are nonzero scalars, then both $\{u + v, au\}$ and $\{au, av\}$ are also bases for V.

Solution. To show that $\{u + v, au\}$ is a base for V, it suffices to prove that u + v and au are linearly independent. Indeed, suppose there exist $\alpha, \beta \in F$ such that

$$\alpha \cdot (u+v) + \beta \cdot au = 0$$

then

$$\begin{cases} \alpha + a\beta = 0, \\ \alpha = 0, \end{cases}$$

which implies that $\alpha = \beta = 0$.

Similarly, to show that $\{au, av\}$ is a base for V, it suffices to prove that au and av are linearly independent. Indeed, suppose there exist $\alpha, \beta \in F$ such that

$$\alpha \cdot au + \beta \cdot av = 0$$

then

$$\begin{cases} a\alpha = 0, \\ a\beta = 0, \end{cases}$$

which implies that $\alpha = \beta = 0$.

Exercise 2. Le u, v, w be distinct vectors of a vector a space V. Show that if $\{u, v, w\}$ is a basis for V, then $\{u + v + w, v + w, w\}$ is also a basis for V.

Solution. It suffices to prove that u+v+w, v+w and w are linearly independent. Indeed, suppose there exist $\alpha, \beta, \gamma \in F$ such that

$$\alpha(u+v+w) + \beta(v+w) + \gamma w = 0,$$

then

$$\begin{cases} \alpha = 0, \\ \alpha + \beta = 0, \\ \alpha + \beta + \gamma = 0, \end{cases}$$

which implies that

Exercise 3. The set of all $n \times n$ matrices having trace equal to zero is a subspace W of $M_{n \times n}(F)$. Find a basis for W. What is the dimension of W?

Solution. The basis for W is $\{E_{ij}\}_{i \neq j, 1 \leq i, j \leq n} \cup \{E_{11} - E_{ii}\}_{2 \leq i \leq n}$. Therefore $\dim(W) = n^2 - 1$.

Exercise 4. Prove that a vector space is infinite-dimensional if and only if it contains an infinite linearly independent subset.

Solution. \Rightarrow : Let V be a infinite-dimensional vector space. Then there exists $0_{\mathsf{V}} \neq v_1 \in \mathsf{V}$, by Replacement theorem, inductively, we can pick $v_{k+1} \in \mathsf{V}$ such that $v_{k+1} \notin \operatorname{span}(\{v_1, v_2, ..., v_k\}) \subsetneq \mathsf{V}$. Since V is infinite dimensional, and by our choice of v_k , we can obtain a set of infinitely many linear independent vector $\{v_k\}_{k\geq 1}$.

 \Leftarrow : Let S be the infinite linearly independent subset of a vector space V. Then $\operatorname{span}(S)$ is a subspace of V with infinite linearly independent vectors, which implies that V is infinite-dimensional.

Exercise 5. Let W_1 and W_2 be subspaces of a finite-dimensional vector space V. Determine necessary and sufficient conditions on W_1 and W_2 so that $\dim(W_1 \cap W_2) = \dim(W_1)$.

Solution. We claim that $\dim(W_1 \cap W_2) = \dim(W_1)$ if and only if $W_1 \subset W_2$.

⇒: Let $\{w_i\}_{1 \leq i \leq n}$ be the basis of $W_1 \cap W_2$ where $n = \dim(W_1 \cap W_2)$. Since $W_1 \cap W_2$ is a subspace of W_1 , then by Replacement theorem, there exists a linearly independent set $\{w'_i\}_{1 \leq i \leq m}$ such that $\{w_i\}_{1 \leq i \leq n} \cup \{w'_i\}_{1 \leq i \leq m}$ is a basis of W_1 , moreover, $m + n = \dim(W_1)$, which implies that m = 0, then $\{w_i\}_{1 \leq i \leq n}$ is also a basis of W_1 , therefore $W_1 \cap W_2 = W_1$, or equivalently, $W_1 \subset W_2$.

 $\Leftarrow: \text{ Since } \mathsf{W}_1 \subset \mathsf{W}_2, \text{ then } \mathsf{W}_1 \cap \mathsf{W}_2 = \mathsf{W}_1 \text{ which implies that } \dim(\mathsf{W}_1 \cap \mathsf{W}_2) = \dim(\mathsf{W}_1).$

Exercise 6. Let $v_1, v_2, ..., v_k, v$ be vectors in a vector space V, and define $W_1 = \text{span}(\{v_1, v_2, ..., v_k\})$, and $W_2 = \text{span}(\{v_1, v_2, ..., v_k, v\})$.

(a) Find necessary and sufficient conditions on v such that $\dim(W_1) = \dim(W_2)$. (b) State and prove a relationship involving $\dim(W_1)$ and $\dim(W_2)$ in the case that $\dim(W_1) \neq \dim(W_2)$.

Solution. (a) We claim that $\dim(W_1) = \dim(W_2)$ if and only if $v \in W_1$.

⇒: Let $\{w_i\}_{1 \le i \le n}$ be a basis of W₁ where $n = \dim(W_1)$. Since W₁ is subspace of W₂, then by Replacement theorem, there exists a linearly independent $\{w'_i\}_{1 \le i \le m}$ such that $\{w_i\}_{1 \le i \le n} \cup \{w'_i\}_{1 \le i \le m}$ is a basis of W₂, moreover, $m + n = \dim(W_2)$, which implies that m = 0, then $\{w_i\}_{1 \le i \le n}$ is also a basis of W₂, therefore $v \in \operatorname{span}(\{w_i\}_{1 \le i \le n}) = W_1$.

⇐: Let $\{w_i\}_{1 \le i \le n}$ be a basis of W_1 where $n = \dim(W_1)$. Since $v \in W_1$, therefore $\{w_i\}_{1 \le i \le n}$ is also a basis of dim (W_2) which implies that dim $(W_1) = \dim(W_2)$. (b) Since $W_1 \subset W_2$, then dim $(W_1) < \dim(W_2)$.

Exercise 7. For a fixed $a \in \mathbb{R}$, determine the dimension of the subspace of $\mathsf{P}_n(\mathbb{R})$ defined by $\{f \in \mathsf{P}_n(\mathbb{R}) : f(a) = 0\}$.

Solution. One basis of $\{f \in \mathsf{P}_n(\mathbb{R}) : f(a) = 0\}$ is $\{x - a, x^2 - a^2, ..., x^n - a^n\}$. Therefore dim $(\mathsf{P}_n(\mathbb{R})) = n$.

Exercise 8. Let V be a finite-dimensional vector space over \mathbb{C} with dimension n. Prove that if V is now regarded as a vector space over \mathbb{R} , then dim V = 2n.

Solution. We claim that $\{e_i\}_{1 \leq i \leq n} \cup \{\mathbf{i}e_i\}_{1 \leq i \leq n}$ is a basis of V over \mathbb{R} where $e_i := (0, ..., \overset{\text{i-th}}{1}, ...0)$ and \mathbf{i} is the imaginary unit. Indeed, suppose there exist $\alpha_i, \beta_j \in \mathbb{R}$ for $1 \leq i \leq n$ and $1 \leq j \leq n$ such that

$$\sum_{i=1}^{n} \alpha e_i + \sum_{j=1}^{n} \beta_j \mathbf{i} e_j = 0,$$

then

$$\begin{cases} \alpha_1 + \beta_1 \mathbf{i} = 0, \\ \alpha_2 + \beta_2 \mathbf{i} = 0, \\ \vdots \\ \alpha_n + \beta_n \mathbf{i} = 0, \end{cases}$$

which implies that $\alpha_1 = \cdots = \alpha_n = \beta_1 = \cdots = \beta_n = 0.$

Exercise 9. Let

$$\mathsf{V} = \mathsf{M}_{2 \times 2}(F), \quad \mathsf{W}_1 = \left\{ \left(\begin{array}{cc} a & b \\ c & a \end{array} \right) \in \mathsf{V} : a, b, c \in F \right\},$$

and

$$\mathsf{W}_2 = \left\{ \left(\begin{array}{cc} 0 & a \\ -a & b \end{array} \right) \in \mathsf{V} : a, b \in F \right\}.$$

Prove that W_1 and W_2 are subspaces of V, and find the dimensions of W_1 , W_2 , $W_1 + W_2$, and $W_1 \cap W_2$.

Solution. Let us prove that W_1 and W_2 are subspaces of V. It is straightforward to verify that W_1 and W_2 are closed under vector addition, scalar addition and scalar multiplication with the commutative property, the associative property and the distributive property. Moreover,

$$0_{\mathsf{W}} := \left(\begin{array}{cc} 0 & 0\\ 0 & 0 \end{array}\right)$$

is a zero element in W_1 and W_2 . dim $(W_1) = 3$, dim $(W_2) = 2$, dim $(W_1 + W_2) = 4$, dim $(W_1 \cap W_2) = 1$. For arbitrary $a, b, c \in F$, Let us denote

$$w_1 := \begin{pmatrix} a & b \\ c & a \end{pmatrix}, \quad w_2 := \begin{pmatrix} 0 & a \\ -a & b \end{pmatrix},$$

then $w_1 \in W_1$ and $w_2 \in W_2$. Since $-w_1 \in W_1$ and $-w_2 \in W_2$, moreover, $w_1 + (-w_1) = 0_W$ and $w_2 + (-w_2) = 0_W$, therefore $-w_1$ and $-w_2$ are the additive inverse of w_1 and w_2 respectively. In addition, we also have $1w_1 = w_1$ and $1w_2 = w_2$.

Since one basis of W_1 is

$$\left\{ \left(\begin{array}{rrr} 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rrr} 0 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{rrr} 0 & 0 \\ 1 & 0 \end{array}\right) \right\},$$

Indeed, it is straightforward to justify that vectors in the above set are linearly independent and generate W_1 , therefore $\dim(W_1) = 3$.

Since one basis of W_2 is

$$\left\{ \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\},$$

Indeed, it is straightforward to justify that vectors in the above set are linearly independent and generate W_2 , therefore $\dim(W_2) = 2$.

Since one basis of $W_1 + W_2$ is

$$\left\{ \left(\begin{array}{rrr} 1 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{rrr} 0 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{rrr} 0 & 0 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rrr} 0 & 0 \\ 0 & 1 \end{array}\right) \right\}$$

Indeed, it is straightforward to justify that vectors in the above set are linearly independent and generate $W_1 + W_2$, therefore dim $(W_1 + W_2) = 4$.

Since one basis of $W_1 \cap W_2$ is

$$\left\{ \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) \right\},\,$$

Indeed, it is straightforward to justify that vectors in the above set are linearly independent and generate $W_1 \cap W_2$, therefore $\dim(W_1 \cap W_2) = 1$.

2. OPTIONAL PART

Exercise 10. Label the following statements as true or false.

(a) The zero vector space has no basis.

(b) Every vector space that is generated by a finite set has a basis.

(c) Every vector space has a finite basis.

(d) A vector space cannot have more than one basis.

(e) If a vector space has a finite basis, then the number of vectors in every basis is the same.

(f) The dimension of $\mathsf{P}_n(F)$ is n.

(g) The dimension of $M_{m \times n}(F)$ is m + n.

(h) Suppose that V is a finite-dimensional vector space, that S_1 is a linearly independent subset of V, and that S_2 is a subset of V that generates V. Then S_1 cannot contain more vectors than S_2 .

(i) If S generate the vector space V, then every vector in V can be written as a linear combination of vectors in S in only one way.

(j) Every subspaces of a finite-dimensional space is finite-dimensional.

(k) If V is a vector space having dimension n, then V has exactly one subspace with dimension 0 and exactly one subspace with dimension n.

(1) If V is a vector space having dimension n, and if S is a subset of V with nvectors, then S is linearly independent if and only if S spans V.

Solution. (a) False. Indeed, the empty set is the basis.

(b) True.

(c) False. Indeed, P(F) does not have a finite basis.

(d) False. Indeed, for \mathbb{R}^2 , $\{(1,0), (0,1)\}$ and $\{(1,1), (1,-1)\}$ are two bases of \mathbb{R}^2 .

(e) True.

(f) False. Indeed, $\dim(\mathsf{P}_n(F)) = n + 1$.

(g) False. Indeed, $\dim(\mathsf{M}_{m \times n}(F)) = mn$.

(h) True.

(i) False. Indeed, let $V = \mathbb{R}$ and $S = \{1, 2\}$, then $4 = 2 \times 1 + 2 = 2 \times 2$.

(j) True.

(k) True.

(l) True.

Exercise 11. Determine which of the following sets are bases for $\mathsf{P}_2(\mathbb{R})$.

- (a) $\{-1 x + 2x^2, 2 + x 2x^2, 1 2x + 4x^2\}$ (b) $\{1 + 2x + x^2, 3 + x^2, x + x^2\}$ (c) $\{1 2x 2x^2, -2 + 3x x^2, 1 x + 6x^2\}$ (d) $\{-1 + 2x + 4x^2, 3 4x 10x^2, -2 5x 6x^2\}$ (e) $\{1 + 2x x^2, 4 2x + x^2, -1 + 18x 9x^2\}$

Solution. (a) No. Indeed, $1 - 2x + 4x^2 = 5 \times (-1 - x + 2x^2) + 3 \times (2 + x - 2x^2)$. (b) Yes.

(c) Yes.

(d) Yes.

(e) No. Indeed, $-1 + 18x - 9x^2 = 7 \times (1 + 2x - x^2) - 2 \times (4 - 2x + x^2)$.

Exercise 12. Give three different bases for F^2 and for $M_{2\times 2}(F)$.

Solution. For F^2 ,

$$\{(1,0),(0,1)\}, \quad \{(-1,0),(0,1)\}, \quad \{(1,0),(0,-1)\}$$

are three bases. For $M_{2\times 2}(F)$,

$$\left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\}, \\ \left\{ \left(\begin{array}{cc} -1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & -1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\}, \\ \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ -1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array} \right) \right\}, \right.$$

are three bases.

Exercise 13. (a) Prove that if W_1 and W_2 are finite-dimensional subspaces of a vector space V, then the subspace $W_1 + W_2$ is finite-dimensional, and $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$.

(b) Let W_1 and W_2 be finite-dimensional subspaces of a vector space V, and let $V = W_1 + W_2$. Deduce that V is the direct sum of W_1 and W_2 if and only if $\dim(V) = \dim(W_1) + \dim(W_2)$.

Solution. (a) Let $\{w_i\}_{1 \le i \le n}$ be a basis of $W_1 \cap W_2$ where $n = \dim(W_1 \cap W_2)$. Since $W_1 \cap W_2 \subset W_1$, then by Replacement theorem, there exists a linearly independent set $\{w'_i\}_{1 \le i \le n_1}$ such that $\{w_i\}_{1 \le i \le n} \cup \{w'_i\}_{1 \le i \le n_1}$ is a basis of W_1 and $n + n_1 = \dim(W_1)$. Similarly, since $W_1 \cap W_2 \subset W_2$, then by Replacement theorem, there exists a linearly independent set $\{w''_i\}_{1 \le i \le n_2}$ such that $\{w_i\}_{1 \le i \le n} \cup \{w''_i\}_{1 \le i \le n_2}$ is a basis of W_2 and $n + n_2 = \dim(W_2)$.

We claim that $\{w_i\}_{1 \leq i \leq n} \cup \{w'_i\}_{1 \leq i \leq n_1} \cup \{w''_i\}_{1 \leq i \leq n_2}$ is a basis of $W_1 + W_2$, it suffices to prove that $\{w_i\}_{1 \leq i \leq n} \cup \{w'_i\}_{1 \leq i \leq n_1} \cup \{w''_i\}_{1 \leq i \leq n_2}$ is linearly independent, indeed, suppose there exist $\alpha_i, \alpha'_j, \alpha''_k \in F$ for $1 \leq i \leq n, 1 \leq j \leq n_1, 1 \leq k \leq n_2$ such that

$$\sum_{i=1}^{n} \alpha_i w_i + \sum_{j=1}^{n_1} \alpha_j w'_j + \sum_{k=1}^{n_2} \alpha_k w''_k = 0,$$

equivalently,

$$v := \sum_{k=1}^{n_2} \alpha_k'' w_k'' = -\sum_{i=1}^n \alpha_i w_i - \sum_{j=1}^{n_1} \alpha_j' w_j',$$

which implies that $v \in W_1 \cap W_2$, then $\alpha_1'' = \cdots = \alpha_{n_2}'' = \alpha_1' = \cdots = \alpha_{n_1}' = \alpha_1 = \cdots = \alpha_n = 0$. Therefore

$$\dim(\mathsf{W}_1 + \mathsf{W}_2) = \dim(\mathsf{W}_1) + \dim(\mathsf{W}_2) - \dim(\mathsf{W}_1 \cap \mathsf{W}_2).$$

(b) \Rightarrow : From the above discussion,

$$\dim(\mathsf{W}_1 + \mathsf{W}_2) = \dim(\mathsf{W}_1) + \dim(\mathsf{W}_2) - \dim(\mathsf{W}_1 \cap \mathsf{W}_2),$$

since V is the direct sum of W_1 and W_2 , we have

$$\dim(\mathsf{W}_1 \cap \mathsf{W}_2) = 0$$

therefore

$$\dim(\mathsf{W}_1 + \mathsf{W}_2) = \dim(\mathsf{W}_1) + \dim(\mathsf{W}_2).$$

 \Leftarrow : Since

$$\dim(\mathsf{W}_1 + \mathsf{W}_2) = \dim(\mathsf{W}_1) + \dim(\mathsf{W}_2),$$

therefore

$$\dim(\mathsf{W}_1 \cap \mathsf{W}_2) = 0,$$

which implies $W_1 \cap W_2 = 0$, then $V = W_1 \oplus W_2$.

Exercise 14. Let W_1 and W_2 be subspaces of a vector space V having dimensions m and n, respectively, where $m \ge n$.

(a) Prove that $\dim(\mathsf{W}_1 \cap \mathsf{W}_2) \leq n$.

(b) Prove that $\dim(W_1 + W_2) \le m + n$.

Solution. (a) Let $\{w_i\}_{1 \leq i \leq l}$ be a basis of $W_1 \cap W_2$ where $l = \dim(W_1 \cap W_2)$. Since $W_1 \cap W_2 \subset W_2$, then $\{w_i\}_{1 \leq i \leq l} \subset W_2$, therefore

$$\dim(\mathsf{W}_1 \cap \mathsf{W}_2) \le n.$$

(b) Let $\{w'_i\}_{1 \leq i \leq m}$ be a basis of W_1 and $\{w''_i\}_{1 \leq i \leq n}$ be a basis of W_2 , then $W_1 + W_2 \subset \operatorname{span}(\{w'_i\}_{1 \leq i \leq m} \cup \{w''_i\}_{1 \leq i \leq n})$, therefore

$$\dim(\mathsf{W}_1 + \mathsf{W}_2) \le m + n.$$

Exercise 15. (a) Find an example of subspaces W_1 and W_2 of \mathbb{R}^3 with dimensions m and n, where m > n > 0, such that $\dim(W_1 \cap W_2) = n$.

(b) Find an example of subspaces W_1 and W_2 of \mathbb{R}^3 with dimensions m and n, where m > n > 0, such that $\dim(W_1 + W_2) = m + n$.

(c) Find an example of subspaces W_1 and W_2 of \mathbb{R}^3 with dimensions m and n, where $m \ge n$, such that both $\dim(W_1 \cap W_2) < n$ and $\dim(W_1 + W_2) < m + n$.

Solution. (a) Let $W_1 := \{(x, y, 0) : x, y \in \mathbb{R}\}$ and $W_2 := \{(x, 0, 0) : x \in \mathbb{R}\}$, then $\dim(W_1 \cap W_2) = \dim(W_2) = 1$.

(b) Let $W_1 := \{(x, 0, 0) : x, y, \in \mathbb{R}\}$ and $W_2 := \{(0, x, 0) : x \in \mathbb{R}\}$, then dim $(W_1 + W_2) = 2$.

(c) Let $W_1 := \{(x, y, 0) : x, y \in \mathbb{R}\}$ and $W_2 := \{(x, 0, 0) : x \in \mathbb{R}\}$, then $\dim(W_1) = 2$, $\dim(W_2) = 1$ and $\dim(W_1 + W_2) = 2$, which implies that $\dim(W_1 + W_2) < \dim(W_1) + \dim(W_2)$.

Exercise 16. (a) Let W_1 and W_2 be subspace of a vector space V such that $V = W_1 \oplus W_2$. If β_1 and β_2 are bases for W_1 and W_2 , respectively, show that $\beta_1 \cap \beta_2 = \emptyset$ and $\beta_1 \cup \beta_2$ is a basis for V.

(b) Conversely, let β_1 and β_2 be disjoint bases for subspaces W_1 and W_2 , respectively, of a vector space V. Prove that if $\beta_1 \cup \beta_2$ is a basis for V, then $V = W_1 \oplus W_2$.

Solution. (a) First, we prove that $\beta_1 \cap \beta_2 = \emptyset$. Indeed, suppose there exists $w \in \beta_1 \cap \beta_2$, then $w \in W_1 \cap W_2$, since $V = W_1 \oplus W_2$, therefore w = 0.

In addition, we prove that $\beta_1 \cup \beta_2$ is a basis for V. Since $V = W_1 \oplus W_2$, therefore for arbitrary $v \in V$, there exists two unique vectors w_1 and w_2 in W_1 and W_2 respectively, which implies that $\operatorname{span}(\beta_1 \cup \beta_2) = V$. Then it suffices to prove that $\beta_1 \cup \beta_2$ is a linear independent set. Indeed, let $\beta_1 = \{w'_i\}_{1 \le i \le |\beta_1|}$ and

6

 $\beta_2 = \{w_i''\}_{1 \le i \le |\beta_2|}$, suppose that there exist $\alpha_i', \alpha_j'' \in F$ for $1 \le i \le |\beta_1|, 1 \le j \le |\beta_2|$ such that

$$\sum_{i=1}^{|\beta_1|} \alpha'_i w'_i + \sum_{j=1}^{|\beta_2|} \alpha''_i w''_i = 0,$$

equivalently,

$$v := \sum_{i=1}^{|\beta_1|} \alpha'_i w'_i = -\sum_{j=1}^{|\beta_2|} \alpha''_i w''_i,$$

then $v \in W_1 \cap W_2$, which implies that $\alpha'_1 = \cdots = \alpha'_{|\beta_1|} = \alpha''_1 = \cdots = \alpha''_{|\beta_2|} = 0$. (b) Let $v \in V$, since $\beta_1 \cup \beta_2$ is a basis for V, then there exist $\alpha'_i, \alpha''_j \in F$ for

(b) Let $v \in V$, since $\beta_1 \cup \beta_2$ is a basis for V, then there exist $\alpha'_i, \alpha''_j \in F$ for $1 \le i \le |\beta_1|, 1 \le j \le |\beta_2|$ such that

$$v = \sum_{i=1}^{|\beta_1|} \alpha'_i w'_i + \sum_{j=1}^{|\beta_2|} \alpha''_i w''_i := w_1 + w_2,$$

which implies that $V = W_1 + W_2$.

Let $v \in W_1 \cap W_2$, then there exist $\alpha'_i, \alpha''_j \in F$ for $1 \le i \le |\beta_1|, 1 \le j \le |\beta_2|$ such that

$$v = \sum_{i=1}^{|\beta_1|} \alpha'_i w'_i = \sum_{j=1}^{|\beta_2|} \alpha''_i w''_i,$$

which implies that

$$\sum_{i=1}^{|\beta_1|} \alpha'_i w'_i - \sum_{j=1}^{|\beta_2|} \alpha''_i w''_i = 0,$$

since $\beta_1 \cap \beta_2 = \emptyset$ and $\beta_1 \cup \beta_2$ is a basis for V, then $w'_1, ..., w'_{|\beta_1|}, w''_1, ..., w''_{|\beta_2|}$ are linearly independent, therefore $\alpha'_1 = \cdots = \alpha'_{|\beta_1|} = \alpha''_1 = \cdots = \alpha''_{|\beta_2|} = 0$, then v = 0.

Therefore $V = W_1 \oplus W_2$.

Exercise 17. (a) Prove that if W_1 is any subspace of a finite-dimensional vector space V, then there exits a subspace W_2 of V such that $V = W_1 \oplus W_2$.

(b) Let $V = \mathbb{R}^2$ and $W_1 = \{(a_1, 0) : a_1 \in \mathbb{R}\}$. Give examples of two different subspaces W_2 and W'_2 such that $V = W_1 \oplus W_2$ and $V = W_1 \oplus W'_2$.

Solution. (a) Let $\{w'_i\}_{1 \le i \le n_1}$ be a basis of W_1 where $n_1 = \dim(W_1)$. Since $W_1 \subset V$, then by Replacement theorem, there exists a linearly independent set $\{w''_i\}_{1 \le i \le n_2}$ such that $\{w'_i\}_{1 \le i \le n_1} \cup \{w''_i\}_{1 \le i \le n_2}$ is a basis of V. Then let $W_2 := \operatorname{span}(\{w''_i\}_{1 \le i \le n_2}/\{w'_i\}_{1 \le i \le n_1})$. Since $\{w'_i\}_{1 \le i \le n_1} \cap (\{w''_i\}_{1 \le i \le n_2}/\{w'_i\}_{1 \le i \le n_1}) = \emptyset$, then $V = W_1 \oplus W_2$.

(b) Let $W_2 = \{(0, a_2) : a_2 \in \mathbb{R}\}$ and $W'_2 = \{(a, a) : a \in \mathbb{R}\}.$